Towards Loop Closure Detection for SLAM Applications Using Bag of Visual Features: Experiments and Simulation

被引:0
作者
Raibolt da Silva, Alexandra Miguel [1 ]
Casqueiro, Gustavo Alves [1 ]
Angonese, Alberto Torres [2 ]
Ferreira Rosa, Paulo Fernando [1 ]
机构
[1] Inst Mil Engn IME, Praca Gen Tiburcio 80, Rio De Janeiro, RJ, Brazil
[2] Fac Ed Tec Estado Rio De Janeiro FAETERJ Petropol, Av Gettilio Vargas 335, Petropolis, RJ, Brazil
来源
COMPUTATIONAL NEUROSCIENCE, LAWCN 2021 | 2022年 / 1519卷
关键词
Embedded vision; SLAM; Feature descriptors; Bag of visual features; Multilayer perceptron;
D O I
10.1007/978-3-031-08443-0_3
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
This paper presents a new approach to exploring sparse and binary convolutional filters in traditional Convolutional Neural Networks (CNN). Recent advances in the integration of Deep Learning architectures, particularly in mobile autonomous robotics applications, have motivated several researches to overcome the challenges related to the limitations of computational resources. One of the biggest challenges in the area, is the development of applications to address the Loop Closure Detection problem in Simultaneous Localization and Mapping (SLAM) systems. For such application, it is necessary to use exhaustive computational power. Nevertheless, resource optimization of Convolutional Neural Network models enhances the capability of integration. Therefore, we propose the reformulation of convolutional layers through Local Binary Descriptors (LBD) to achieve this kind of optimization of CNN's resources. This paper discusses the evaluation of a Bag of Visual Features (BoVF) approach, extracting features through local descriptors (e.g., SIFT, SURF, KAZE), and local binary descriptors (e.g., BRIEF, ORB, BRISK, AKAZE, FREAK). The descriptors were evaluated in the recognition and classification steps using six visual datasets (i.e., MNIST, JAFFE, Extended CK+, FEI, CIFAR-10, and FER-2013) through a Multilayer Perceptron (MLP) classifier. Experimentally, we demonstrated the feasibility of producing promising results by combining BoVF with MLP classifier. Additionally, we can assume that the computed descriptors generated by a Local Binary Descriptor alongside the proposed hybrid DNN (Deep Neural Network) architecture can satisfactorily accomplish the results for the optimization of a CNN's resources applied to the Loop Closure Detection problem.
引用
收藏
页码:27 / 47
页数:21
相关论文
共 45 条
  • [1] Alahi A, 2012, PROC CVPR IEEE, P510, DOI 10.1109/CVPR.2012.6247715
  • [2] Fast Explicit Diffusion for Accelerated Features in Nonlinear Scale Spaces
    Alcantarilla, Pablo F.
    Nuevo, Jesus
    Bartoli, Adrien
    [J]. PROCEEDINGS OF THE BRITISH MACHINE VISION CONFERENCE 2013, 2013,
  • [3] KAZE Features
    Alcantarilla, Pablo Fernandez
    Bartoli, Adrien
    Davison, Andrew J.
    [J]. COMPUTER VISION - ECCV 2012, PT VI, 2012, 7577 : 214 - 227
  • [4] Alex K., 2009, LEARNING MULTIPLE LA
  • [5] Binary patterns encoded convolutional neural networks for texture recognition and remote sensing scene classification
    Anwer, Rao Muhammad
    Khan, Fahad Shahbaz
    van de Weijer, Joost
    Molinier, Matthieu
    Laaksonen, Jorma
    [J]. ISPRS JOURNAL OF PHOTOGRAMMETRY AND REMOTE SENSING, 2018, 138 : 74 - 85
  • [6] Review of visual odometry: types, approaches, challenges, and applications
    Aqel, Mohammad O. A.
    Marhaban, Mohammad H.
    Saripan, M. Iqbal
    Ismail, Napsiah Bt.
    [J]. SPRINGERPLUS, 2016, 5
  • [7] Key.Net: Keypoint Detection by Handcrafted and Learned CNN Filters
    Barroso-Laguna, Axel
    Riba, Edgar
    Ponsa, Daniel
    Mikolajczyk, Krystian
    [J]. 2019 IEEE/CVF INTERNATIONAL CONFERENCE ON COMPUTER VISION (ICCV 2019), 2019, : 5835 - 5843
  • [8] SURF: Speeded up robust features
    Bay, Herbert
    Tuytelaars, Tinne
    Van Gool, Luc
    [J]. COMPUTER VISION - ECCV 2006 , PT 1, PROCEEDINGS, 2006, 3951 : 404 - 417
  • [9] Bekele D, 2013, IEEE IMAGE PROC, P3652, DOI 10.1109/ICIP.2013.6738753
  • [10] Latent Dirichlet allocation
    Blei, DM
    Ng, AY
    Jordan, MI
    [J]. JOURNAL OF MACHINE LEARNING RESEARCH, 2003, 3 (4-5) : 993 - 1022