Complex structure on quantum-braided planes

被引:0
作者
Beggs, Edwin [1 ]
Majid, Shahn [2 ]
机构
[1] Swansea Univ, Dept Math, Bay Campus, Swansea SA1 8EN, Wales
[2] Queen Mary Univ London, Sch Math Sci, Mile End Rd, London E1 4NS, England
关键词
Noncommutative geometry; Quantum Riemannian geometry; CONNECTIONS; CONSTRUCTION; GEOMETRY; STAR;
D O I
10.1007/s11005-025-01914-3
中图分类号
O4 [物理学];
学科分类号
0702 ;
摘要
We construct a quantum Dolbeault double complex circle plus p,q Omega p,q\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\oplus _{p,q}\Omega <^>{p,q}$$\end{document} on the quantum plane Cq2\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}_q<^>2$$\end{document}. This solves the long-standing problem that the standard differential calculus on the quantum plane is not a & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-calculus, by embedding it as the holomorphic part of a & lowast;\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$*$$\end{document}-calculus. We show in general that any Nichols-Woronowicz algebra or braided plane B+(V)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$B_+(V)$$\end{document}, where V is an object in an Abelian C\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {C}}$$\end{document}-linear braided bar category of real type, is a quantum complex space in this sense of a factorisable Dolbeault double complex. We combine the Chern construction on Omega 1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega <^>{1,0}$$\end{document} in such a Dolbeault complex for an algebra A with its conjugate to construct a canonical metric-compatible connection on Omega 1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega <^>1$$\end{document} associated with a class of quantum metrics, and apply this to the quantum plane. We also apply this to finite groups G with Cayley graph generators split into two halves related by inversion, constructing such a Dolbeault complex Omega(G)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega (G)$$\end{document} in this case. This construction recovers the quantum Levi-Civita connection for any edge-symmetric metric on the integer lattice with Omega(Z)\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega ({\mathbb {Z}})$$\end{document}, now viewed as a quantum complex structure on Z\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$${\mathbb {Z}}$$\end{document}. We also show how to build natural quantum metrics on Omega 1,0\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega <^>{1,0}$$\end{document} and Omega 0,1\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\Omega <^>{0,1}$$\end{document} separately, where the inner product in the case of the quantum plane, in order to descend to circle times A\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\otimes _A$$\end{document}, is taken with values in an A-bimodule.
引用
收藏
页数:36
相关论文
共 26 条
  • [1] Aschieri P, 2023, Arxiv, DOI arXiv:2209.05453
  • [2] Bar Categories and Star Operations
    Beggs, E. J.
    Majid, S.
    [J]. ALGEBRAS AND REPRESENTATION THEORY, 2009, 12 (2-5) : 103 - 152
  • [3] Beggs E.J., 2020, Grundlehren der mathematischen Wissenschaften, V355
  • [4] Spectral triples from bimodule connections and Chern connections
    Beggs, Edwin
    Majid, Shahn
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2017, 11 (02) : 669 - 701
  • [5] Non-commutative complex differential geometry
    Beggs, Edwin
    Smith, S. Paul
    [J]. JOURNAL OF GEOMETRY AND PHYSICS, 2013, 72 : 7 - 33
  • [6] Line bundles and the Thom construction in noncommutative geometry
    Beggs, Edwin J.
    Brzezinski, Tomasz
    [J]. JOURNAL OF NONCOMMUTATIVE GEOMETRY, 2014, 8 (01) : 61 - 105
  • [7] On the Koszul formula in noncommutative geometry
    Bhowmick, Jyotishman
    Goswami, Debashish
    Landi, Giovanni
    [J]. REVIEWS IN MATHEMATICAL PHYSICS, 2020, 32 (10)
  • [8] Bichsel W., 1994, Contemp. Math, V155
  • [9] Riemannian Geometry of a Discretized Circle and Torus
    Bochniak, Arkadiusz
    Sitarz, Andrzej
    Zalecki, Pawel
    [J]. SYMMETRY INTEGRABILITY AND GEOMETRY-METHODS AND APPLICATIONS, 2020, 16
  • [10] Noncommutative Kahler structures on quantum homogeneous spaces
    Buachalla, Reamonn O.
    [J]. ADVANCES IN MATHEMATICS, 2017, 322 : 892 - 939