Machine learning-based laser heterodyne photothermal displacement method: simultaneous estimation of silicon thermal diffusivity and carrier lifetime

被引:0
作者
Urano, Shota [1 ]
Harada, Tomoki [1 ]
Ikari, Tetsuo [1 ]
Kutsukake, Kentaro [2 ]
Fukuyama, Atsuhiko [1 ]
机构
[1] Univ Miyazaki, Grad Sch Engn, Miyazaki 8892192, Japan
[2] Nagoya Univ, Inst Mat & Syst Sustainabil, Nagoya 4648601, Japan
关键词
machine learning; photothermal method; surrogate model;
D O I
10.35848/1347-4065/ada9f6
中图分类号
O59 [应用物理学];
学科分类号
摘要
The laser heterodyne photothermal displacement (LH-PD) method, a recently developed photothermal technique, enables the measurement of absolute surface displacements, which are otherwise challenging to measure with other photothermal methods. This method offers significant potential for quantifying physical properties that are difficult to achieve with traditional photothermal methods. In this study, we aimed to estimate the thermal diffusivity and carrier lifetime of Si using a machine-learning model based on the time variation of the displacement obtained using the LH-PD method. By leveraging the machine learning model, we generated predictive mappings of thermal diffusivity and carrier lifetime of a pattern-etched Si wafer from the displacement mappings. Furthermore, our findings demonstrated that fine-tuning the model enabled accurate predictions of the carrier lifetime. While traditional simulations require tens of hours to estimate the material parameters, machine learning reduced this process to only a few seconds.
引用
收藏
页数:7
相关论文
共 34 条
[1]   Optuna: A Next-generation Hyperparameter Optimization Framework [J].
Akiba, Takuya ;
Sano, Shotaro ;
Yanase, Toshihiko ;
Ohta, Takeru ;
Koyama, Masanori .
KDD'19: PROCEEDINGS OF THE 25TH ACM SIGKDD INTERNATIONAL CONFERENCCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2019, :2623-2631
[2]  
[Anonymous], COMSOL Multiphysics
[3]  
[Anonymous], 1880, Am. J. Sci., DOI DOI 10.2475/AJS.S3-20.118.305
[4]  
[Anonymous], 2015, Large-Scale Machine Learning on Heterogeneous DistributedSystems
[5]   Machine learning in electron microscopy for advanced nanocharacterization: current developments, available tools and future outlook [J].
Botifoll, Marc ;
Pinto-Huguet, Ivan ;
Arbiol, Jordi .
NANOSCALE HORIZONS, 2022, 7 (12) :1427-1477
[6]   Extracting bulk defect parameters in silicon wafers using machine learning models [J].
Buratti, Yoann ;
Le Gia, Quoc Thong ;
Dick, Josef ;
Zhu, Yan ;
Hameiri, Ziv .
NPJ COMPUTATIONAL MATERIALS, 2020, 6 (01)
[7]   STUDY OF ALDEHYDE PHOTOCHEMISTRY WITH SPECTROPHONE TECHNIQUE [J].
DEGROOT, MS ;
EMEIS, CA ;
HESSELMA.IA ;
DRENT, E ;
FARENHOR.E .
CHEMICAL PHYSICS LETTERS, 1972, 17 (03) :332-334
[8]   Accessing thermo-mechanical properties of semiconductors using a pump-probe surface displacement method [J].
Gonzalez-Borrero, P. P. ;
Lukasievicz, G. V. B. ;
Zanuto, V. S. ;
Astrath, N. G. C. ;
Malacarne, L. C. .
JOURNAL OF APPLIED PHYSICS, 2017, 121 (19)
[9]   Lifetime of photoexcited carriers in space-controlled Si nanopillar/SiGe composite films investigated by a laser heterodyne photothermal displacement method [J].
Harada, Tomoki ;
Ohori, Daisuke ;
Endo, Kazuhiko ;
Samukawa, Seiji ;
Ikari, Tetsuo ;
Fukuyama, Atsuhiko .
JOURNAL OF APPLIED PHYSICS, 2023, 133 (12)
[10]   Development of laser heterodyne photothermal displacement method for mapping carrier nonradiative recombination centers in semiconductors [J].
Harada, Tomoki ;
Ikari, Tetsuo ;
Fukuyama, Atsuhiko .
JOURNAL OF APPLIED PHYSICS, 2022, 131 (19)