Spectral Variability-Aware Cascaded Autoencoder for Hyperspectral Unmixing

被引:0
|
作者
Zhang, Ge [1 ,2 ]
Mei, Shaohui [1 ]
Wang, Yufei [3 ]
Han, Huiyang [1 ]
Feng, Yan [1 ]
Du, Qian [4 ]
机构
[1] Northwestern Polytech Univ, Sch Elect & Informat, Xian 710129, Peoples R China
[2] Beijing Inst Tracking & Telecommun Technol, Beijing 100094, Peoples R China
[3] Qiyuan Lab, Beijing 100089, Peoples R China
[4] Mississippi State Univ, Dept Elect & Comp Engn, Starkville, MS 39762 USA
来源
IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING | 2025年 / 63卷
基金
中国国家自然科学基金;
关键词
Autoencoders; Perturbation methods; Mixture models; Hyperspectral imaging; Atmospheric modeling; Additives; Training; Lighting; Electronic mail; Geometry; Autoencoder; deep learning; hyperspectral images (HSIs); spectral variability; ALGORITHM;
D O I
10.1109/TGRS.2025.3543566
中图分类号
P3 [地球物理学]; P59 [地球化学];
学科分类号
0708 ; 070902 ;
摘要
Spectral variability inevitably presents in hyperspectral images (HSIs), resulting in significant unmixing errors when using the conventional linear mixture model (LMM). Though several variants of LMM have been proposed to encounter such spectral variability, they cannot well model the complex characteristics of spectral variability, and the performance of these variants strongly depends on the prior knowledge of the scene. In this article, spectral variability within an image is classified into class-dependent variability and class-independent one, which can be tackled by a novel fully linear mixture model (FLMM) introducing a class-dependent multiplicative scaling term, a class-dependent additive perturbation term, and a class-independent variability term into the conventional LMM. Moreover, a spectral variability-aware cascaded autoencoder (SVACA) is designed to realize the automatic learning and representation of unmixing targets and spectral variability in different hyperspectral scenarios, which consists of a class-independent variability autoencoder and a cascaded class-dependent variability autoencoder. Such a network is able to handle different spectral variability autonomously without any scene prior by parallel inference structure. Experimental results over synthetic and real hyperspectral datasets demonstrate that the proposed SVACA network not only outperforms several state-of-the-art unmixing networks but also presents a stronger capability to handle spectral variability within HSIs.
引用
收藏
页数:12
相关论文
共 50 条
  • [1] CDCTA: cascaded dual-constrained transformer autoencoder for hyperspectral unmixing with endmember variability and spectral geometry
    Yang, Yuanhui
    Wang, Ying
    Liu, Tianxu
    JOURNAL OF APPLIED REMOTE SENSING, 2024, 18 (02)
  • [2] Cascaded hybrid convolutional autoencoder network for spectral-spatial nonlinear hyperspectral unmixing
    Wu, Jinbin
    Zhao, Jiankang
    Long, Haihui
    INTERNATIONAL JOURNAL OF REMOTE SENSING, 2024, 45 (24) : 9267 - 9286
  • [3] A cascaded autoencoder unmixing network for Hyperspectral anomaly detection
    Li, Kun
    Wang, Yingqian
    Ling, Qiang
    Cai, Yaoming
    Qin, Yao
    INTERNATIONAL JOURNAL OF APPLIED EARTH OBSERVATION AND GEOINFORMATION, 2025, 136
  • [4] Convolutional Autoencoder for Spectral Spatial Hyperspectral Unmixing
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    IEEE TRANSACTIONS ON GEOSCIENCE AND REMOTE SENSING, 2021, 59 (01): : 535 - 549
  • [5] CONVOLUTIONAL AUTOENCODER FOR SPATIAL-SPECTRAL HYPERSPECTRAL UNMIXING
    Palsson, Burkni
    Ulfarsson, Magnus O.
    Sveinsson, Johannes R.
    2019 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2019), 2019, : 357 - 360
  • [6] Spatial-Spectral Autoencoder Networks for Hyperspectral Unmixing
    Huang, Yongfa
    Li, Jie
    Qi, Lin
    Wang, Ying
    Gao, Xinbo
    IGARSS 2020 - 2020 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2020, : 2396 - 2399
  • [7] Spectral Variability in Hyperspectral Data Unmixing
    Borsoi, Ricardo
    Imbiriba, Tales
    Bermudez, Jose Carlos
    Richard, Cedric
    Chanussot, Jocelyn
    Drumetz, Lucas
    Tourneret, Jean-Yves
    Zare, Alina
    Jutten, Christian
    IEEE GEOSCIENCE AND REMOTE SENSING MAGAZINE, 2021, 9 (04) : 223 - 270
  • [8] Spectral Variability Aware Blind Hyperspectral Image Unmixing Based on Convex Geometry
    Drumetz, Lucas
    Chanussot, Jocelyn
    Jutten, Christian
    Ma, Wing-Kin
    Iwasaki, Akira
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 4568 - 4582
  • [9] A SPECTRAL-SPATIAL ATTENTION AUTOENCODER NETWORK FOR HYPERSPECTRAL UNMIXING
    Wang, Jie
    Xu, Jindong
    IGARSS 2023 - 2023 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM, 2023, : 7519 - 7522
  • [10] Gated Autoencoder Network for Spectral-Spatial Hyperspectral Unmixing
    Hua, Ziqiang
    Li, Xiaorun
    Jiang, Jianfeng
    Zhao, Liaoying
    REMOTE SENSING, 2021, 13 (16)