A practical data-driven approach for precise stem water potential monitoring in pistachio and almond orchards using supervised machine learning algorithms

被引:0
|
作者
Mortazavi, Mehrad [1 ]
Carpin, Stefano [2 ]
Toudeshki, Arash [1 ]
Ehsani, Reza [1 ]
机构
[1] Univ Calif Merced, Dept Mech Engn, Merced, CA 95343 USA
[2] Univ Calif Merced, Dept Comp Sci & Engn, Merced, CA USA
基金
美国国家科学基金会;
关键词
Machine learning; Data fusion; Water stress; Stem water potential; Remote sensing; STRESS INDEX; IRRIGATION; VARIABILITY; PERFORMANCE; INDICATOR;
D O I
10.1016/j.compag.2025.110004
中图分类号
S [农业科学];
学科分类号
09 ;
摘要
The advent of machine learning technologies in conjunction with the advancements in UAV-based remote sensing pioneered a new era of research in agriculture. The escalating concern for water management in drought-prone areas such as California underscores the urgent need for sustainable solutions. Stem water potential (SWP) measurement using pressure chambers is one of the most common methods used to directly determine tree water status and the optimal timing for irrigation in orchards. However, this approach is inefficient due to its labor-intensive nature. To address this problem, we used weather, thermal and multispectral data as inputs to the machine learning (ML) algorithms to predict the SWP of pistachio and almond trees. For each crop, we first deployed six supervised ML classification models: Random Forest (RF), Support Vector Machine (SVM), Gaussian Naive Bayes (GNB), Decision Tree (DT), K-Nearest Neighbors (KNN), and Artificial Neural Network (ANN). All classifiers provided more than 79% of accuracy while RF showed high performance in both pistachio and almond orchards at 88% and 89%, respectively. The feature importance results by the RF model revealed that the weather features were the most influential factors in the decision- making process. In both crops, canopy temperature T was the next important feature closely followed by OSAVI in pistachios and NDVI in almonds. RF regression model predicted SWPs with R2 of 0.70 in pistachio and R2 of 0.55 in the almond orchard. Our results demonstrate that ML models are practical tools for irrigation scheduling decisions. This study offered a data-driven approach that effectively balances minimal data requirements with accuracy to facilitate optimal water management for end-users.
引用
收藏
页数:13
相关论文
共 50 条
  • [1] A Battery Health Monitoring Method Using Machine Learning: A Data-Driven Approach
    Sheikh, Shehzar Shahzad
    Anjum, Mahnoor
    Khan, Muhammad Abdullah
    Hassan, Syed Ali
    Khalid, Hassan Abdullah
    Gastli, Adel
    Ben-Brahim, Lazhar
    ENERGIES, 2020, 13 (14)
  • [2] Water quality prediction: A data-driven approach exploiting advanced machine learning algorithms with data augmentation
    Karthick, K.
    Krishnan, S.
    Manikandan, R.
    JOURNAL OF WATER AND CLIMATE CHANGE, 2024, 15 (02) : 431 - 452
  • [3] An Intelligent Data-Driven Approach for Electrical Energy Load Management Using Machine Learning Algorithms
    Akhtar, Shamim
    Bin Sujod, Muhamad Zahim
    Rizvi, Syed Sajjad Hussain
    ENERGIES, 2022, 15 (15)
  • [4] Prediction of dialysis adequacy using data-driven machine learning algorithms
    Liu, Yi-Chen
    Qing, Ji-Ping
    Li, Rong
    Chang, Juan
    Xu, Li-Xia
    RENAL FAILURE, 2024, 46 (02)
  • [5] Data-driven energy consumption prediction of a university office building using machine learning algorithms
    Yesilyurt, Hasan
    Dokuz, Yesim
    Dokuz, Ahmet Sakir
    ENERGY, 2024, 310
  • [6] A Review of Data-Driven Machinery Fault Diagnosis Using Machine Learning Algorithms
    Jian Cen
    Zhuohong Yang
    Xi Liu
    Jianbin Xiong
    Honghua Chen
    Journal of Vibration Engineering & Technologies, 2022, 10 : 2481 - 2507
  • [7] A Review of Data-Driven Machinery Fault Diagnosis Using Machine Learning Algorithms
    Cen, Jian
    Yang, Zhuohong
    Liu, Xi
    Xiong, Jianbin
    Chen, Honghua
    JOURNAL OF VIBRATION ENGINEERING & TECHNOLOGIES, 2022, 10 (07) : 2481 - 2507
  • [8] A supervised machine learning approach to data-driven simulation of resilient supplier selection in digital manufacturing
    Cavalcante, Ian M.
    Frazzon, Enzo M.
    Forcellini, Fernando A.
    Ivanov, Dmitry
    INTERNATIONAL JOURNAL OF INFORMATION MANAGEMENT, 2019, 49 : 86 - 97
  • [9] Load Redistribution Attack Detection using Machine Learning: A Data-Driven Approach
    Pinceti, Andrea
    Sankar, Lalitha
    Kosut, Oliver
    2018 IEEE POWER & ENERGY SOCIETY GENERAL MEETING (PESGM), 2018,
  • [10] Data-driven approach for hydrocarbon production forecasting using machine learning techniques
    Chahar, Jaiyesh
    Verma, Jayant
    Vyas, Divyanshu
    Goyal, Mukul
    JOURNAL OF PETROLEUM SCIENCE AND ENGINEERING, 2022, 217