共 50 条
Sulforaphane regulates AngII-induced podocyte oxidative stress injury through the Nrf2-Keap1/ho-1/ROS pathway
被引:0
|作者:
Lu, Wen
[1
]
机构:
[1] Rizhao Peoples Hosp, Dept Gen Med, Rizhao 276800, Peoples R China
关键词:
Sulforaphane;
podocytes;
oxidative stress;
Nrf2;
Keap1;
HO-1;
NRF2;
PROTEINURIA;
NEPHROPATHY;
APOPTOSIS;
AUTOPHAGY;
INDUCTION;
PROTECTS;
D O I:
10.1080/0886022X.2024.2416937
中图分类号:
R5 [内科学];
R69 [泌尿科学(泌尿生殖系疾病)];
学科分类号:
1002 ;
100201 ;
摘要:
ObjectiveThis study aimed to investigate the therapeutic effects of sulforaphane and the role of the Nrf2-Keap1/HO-1/ROS pathway in AngII-induced oxidative stress in podocyte injury.MethodsMouse mpc5 podocytes were divided into four groups: control (Con), AngII, AngII + sulforaphane (AngII + SFN), and control + sulforaphane (Con + SFN). Western blotting was used to detect protein expression of Nrf2-Keap1, antioxidant enzyme HO-1, and apoptosis-related proteins. ROS levels were measured using a ROS assay kit, and cell survival and viability were assayed using the CCK-8 kit. Molecular interactions between Nrf2 and sulforaphane were analyzed computationally.ResultsCompared with the Con group, podocytes treated with AngII alone exhibited inhibited proliferation, reduced cell viability, lower Bcl-2 expression, and higher cleaved caspase 3 expression. In the presence of sulforaphane, AngII group showed a mild inhibition on podocyte proliferation but did not induce the aforementioned changes in Bcl-2 and cleaved caspase 3 expression. Similarly, compared to the Con group, AngII treatment alone had lower Nrf2 expression and higher Keap1 expression in podocytes, accompanied by a significant decrease in ROS content. However, in the presence of sulforaphane, AngII failed to induce increases in Nrf2 and a decrease in Keap1 expression, as well as ROS levels. Furthermore, cells treated with sulforaphane exhibited higher HO-1 levels than control cells, and co-incubation with AngII did not alter HO-1 levels. Computational modeling revealed hydrophobic interactions between sulforaphane and the amino acid LYS-462 of Nrf2, as well as hydrogen bonding with amino acid HIS-465. The binding score between sulforaphane and Nrf2 was -4.7.ConclusionSulforaphane alleviated AngII-induced podocyte oxidative stress injury via the Nrf2-Keap1/HO-1/ROS pathway, providing new insights into therapeutic compounds for mitigating chronic kidney disease.
引用
收藏
页数:8
相关论文