Rational Catalan numbers for complex reflection groups ☆

被引:0
作者
Miller, Weston [1 ]
机构
[1] Univ Texas Dallas, Dallas, TX 75080 USA
基金
美国国家科学基金会;
关键词
Reflection groups; Hecke algebras; Catalan numbers; ELEMENTS; FACTORIZATIONS; CHEVIE;
D O I
10.1016/j.jalgebra.2025.01.027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
Assuming standard conjectures, we show that the canonical symmetrizing trace on the Hecke algebra of irreducible spetsial complex reflection groups produces rational Catalan numbers when evaluated at powers of a Coxeter element. This extends a technique used by Galashin, Lam, Trinh, and Williams to uniformly prove the enumeration of their noncrossing Catalan objects for finite Coxeter groups. (c) 2025 The Author(s). Published by Elsevier Inc. This is an open access article under the CC BY license (http:// creativecommons.org/licenses/by/4.0/).
引用
收藏
页码:10 / 30
页数:21
相关论文
共 52 条
[1]  
[Anonymous], 2024, Mathematica, Version 14.1
[2]   Rational Parking Functions and Catalan Numbers [J].
Armstrong, Drew ;
Loehr, Nicholas A. ;
Warrington, Gregory S. .
ANNALS OF COMBINATORICS, 2016, 20 (01) :21-58
[3]   Parking spaces [J].
Armstrong, Drew ;
Reiner, Victor ;
Rhoades, Brendon .
ADVANCES IN MATHEMATICS, 2015, 269 :647-706
[4]   SCHUR INDEXES AND SPLITTING FIELDS OF UNITARY REFLECTION GROUPS [J].
BENARD, M .
JOURNAL OF ALGEBRA, 1976, 38 (02) :318-342
[5]   Field of definition of a complex reflection group [J].
Bessis, D .
COMMUNICATIONS IN ALGEBRA, 1997, 25 (08) :2703-2716
[6]   A partial order on the orthogonal group [J].
Brady, T ;
Watt, C .
COMMUNICATIONS IN ALGEBRA, 2002, 30 (08) :3749-3754
[7]   Reduced words and a length function for G(e,1,n) [J].
Bremke, K ;
Malle, G .
INDAGATIONES MATHEMATICAE-NEW SERIES, 1997, 8 (04) :453-469
[8]  
Broue M, 1997, PROG MATH, V141, P73
[9]  
Broue M, 1998, J REINE ANGEW MATH, V500, P127
[10]   Towards spetses I [J].
Broué, M ;
Malle, G ;
Michel, J .
TRANSFORMATION GROUPS, 1999, 4 (2-3) :157-218