BLIND INPAINTING WITH OBJECT-AWARE DISCRIMINATION FOR ARTIFICIAL MARKER REMOVAL

被引:0
作者
Guo, Xuechen [1 ]
Hu, Wenhao [1 ]
Ni, Chiming [1 ]
Chai, Wenhao [2 ]
Li, Shiyan [3 ]
Wang, Gaoang [1 ]
机构
[1] Zhejiang Univ, ZJU UIUC Inst, Hangzhou, Peoples R China
[2] Univ Washington, Dept Elect & Comp Engn, Seattle, WA 98195 USA
[3] Zhejiang Univ, Sir Run Run Shaw Hosp, Hangzhou, Peoples R China
来源
2024 IEEE INTERNATIONAL CONFERENCE ON ACOUSTICS, SPEECH AND SIGNAL PROCESSING, ICASSP 2024 | 2024年
基金
中国国家自然科学基金;
关键词
Blind image inpainting; generative adversarial networks; image reconstruction; dense object detector;
D O I
10.1109/ICASSP48485.2024.10448193
中图分类号
学科分类号
摘要
Medical images often incorporate doctor-added markers that can hinder AI-based diagnosis. This issue highlights the need of inpainting techniques to restore the corrupted visual contents. However, existing methods require manual mask annotation as input, limiting the application scenarios. In this paper, we propose a novel blind inpainting method that automatically reconstructs visual contents within the corrupted regions without mask input as guidance. Our model includes a blind reconstruction network and an object-aware discriminator for adversarial training. The reconstruction network contains two branches that predict corrupted regions in images and simultaneously restore the missing visual contents. Leveraging the potent recognition capability of a dense object detector, the object-aware discriminator ensures markers undetectable after inpainting. Thus, the restored images closely resemble the clean ones. We evaluate our method on three datasets of various medical imaging modalities, confirming better performance over other state-of-the-art methods.
引用
收藏
页码:1516 / 1520
页数:5
相关论文
共 19 条
  • [1] Blind Inpainting Using l0 and Total Variation Regularization
    Afonso, Manya V.
    Raposo Sanches, Joao Miguel
    [J]. IEEE TRANSACTIONS ON IMAGE PROCESSING, 2015, 24 (07) : 2239 - 2253
  • [2] Armanious K, 2020, IEEE IMAGE PROC, P3005, DOI [10.1109/icip40778.2020.9191207, 10.1109/ICIP40778.2020.9191207]
  • [3] Belli Davide, 2018, ARXIV
  • [4] Blind inpainting using the fully convolutional neural network
    Cai, Nian
    Su, Zhenghang
    Lin, Zhineng
    Wang, Han
    Yang, Zhijing
    Ling, Bingo Wing-Kuen
    [J]. VISUAL COMPUTER, 2017, 33 (02) : 249 - 261
  • [5] Machine Learning and Deep Learning in Medical Imaging: Intelligent Imaging
    Currie, Geoff
    Hawk, K. Elizabeth
    Rohren, Eric
    Vial, Alanna
    Klein, Ran
    [J]. JOURNAL OF MEDICAL IMAGING AND RADIATION SCIENCES, 2019, 50 (04) : 477 - 487
  • [6] Image Inpainting: A Review
    Elharrouss, Omar
    Almaadeed, Noor
    Al-Maadeed, Somaya
    Akbari, Younes
    [J]. NEURAL PROCESSING LETTERS, 2020, 51 (02) : 2007 - 2028
  • [7] Jocher Glenn, 2022, ULTRALYTICS YOLOV5 V
  • [8] MAT: Mask-Aware Transformer for Large Hole Image Inpainting
    Li, Wenbo
    Lin, Zhe
    Zhou, Kun
    Qi, Lu
    Wang, Yi
    Jia, Jiaya
    [J]. 2022 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION (CVPR), 2022, : 10748 - 10758
  • [9] Evaluation of prostate segmentation algorithms for MRI: The PROMISE12 challenge
    Litjens, Geert
    Toth, Robert
    van de Ven, Wendy
    Hoeks, Caroline
    Kerkstra, Sjoerd
    van Ginneken, Bram
    Vincent, Graham
    Guillard, Gwenael
    Birbeck, Neil
    Zhang, Jindang
    Strand, Robin
    Malmberg, Filip
    Ou, Yangming
    Davatzikos, Christos
    Kirschner, Matthias
    Jung, Florian
    Yuan, Jing
    Qiu, Wu
    Gao, Qinquan
    Edwards, Philip Eddie
    Maan, Bianca
    van der Heijden, Ferdinand
    Ghose, Soumya
    Mitra, Jhimli
    Dowling, Jason
    Barratt, Dean
    Huisman, Henkjan
    Madabhushi, Anant
    [J]. MEDICAL IMAGE ANALYSIS, 2014, 18 (02) : 359 - 373
  • [10] Deep Blind Image Inpainting
    Liu, Yang
    Pan, Jinshan
    Su, Zhixun
    [J]. INTELLIGENCE SCIENCE AND BIG DATA ENGINEERING: VISUAL DATA ENGINEERING, PT I, 2019, 11935 : 128 - 141