On Diophantine Equations 2x ± (2kp)y = z2 and-2x + (2k3)y = z2

被引:0
作者
Li, Yuan [1 ]
Lloyd, Torre [1 ]
Clinton, Angel [1 ]
机构
[1] Winston Salem State Univ, Dept Math, Winston Salem, NC 27110 USA
关键词
Catalan equation; elliptic curve;
D O I
10.3390/math12244027
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
In this paper, we solve three Diophantine equations: 2x +/-(2kp)y=z2 and -2x+(2k3)y=z2 with k >= 0 and prime p equivalent to +/- 3(mod8). We obtain all the non-negative integer solutions by using elementary methods and the database of elliptic curves in "The L-functions and modular forms database" (LMFDB).
引用
收藏
页数:6
相关论文
共 13 条
  • [1] Borah Bhushan, 2022, Integers, V22
  • [2] Permanent Magnet Electrodynamic Suspension System Integrated With a Car: Design, Implementation, and Test
    Deng, Zigang
    Shi, Hongfu
    Ke, Zhihao
    Liu, Junzhi
    Li, Zhengyan
    Zhang, Baojian
    Jiang, Zhenxiong
    Zhou, Jin
    Liu, Yong
    [J]. IEEE TRANSACTIONS ON TRANSPORTATION ELECTRIFICATION, 2024, 10 (01): : 1101 - 1115
  • [3] On the Diophantine Equation Mpx
    Gayo, William S., Jr.
    Bacani, Jerico B.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (02): : 396 - 403
  • [4] LE MH, 1995, ACTA ARITH, V71, P253
  • [5] The Diophantine equation 2x2+1=3n
    Leu, MG
    Li, GW
    [J]. PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2003, 131 (12) : 3643 - 3645
  • [6] lmfdb.org, The L-Functions and Modular Forms Database (LMFDB)
  • [7] Mihailescu P, 2004, J REINE ANGEW MATH, V572, P167
  • [8] On the solutions of the Diophantine equation px
    Mina, Renz Jimwel S.
    Bacani, Jerico B.
    [J]. EUROPEAN JOURNAL OF PURE AND APPLIED MATHEMATICS, 2021, 14 (02): : 471 - 479
  • [9] Shorey T. N., 1986, Exponential Diophantine Equations
  • [10] Sroysang B., 2013, Int. J. Pure Appl. Math, V84, P133, DOI [10.12732/ijpam.v84i2.11, DOI 10.12732/IJPAM.V84I2.11]