Graphene based linear array antenna and quad-port multiple input and multiple output antenna for terahertz wireless communication

被引:0
作者
Pandey, Govind Kumar [1 ]
Thipparaju, Rama Rao [1 ]
机构
[1] SRM Inst Sci & Technol, Dept Elect & Commun Engn, Kattankulathur 603203, Tamilnadu, India
来源
MICROSYSTEM TECHNOLOGIES-MICRO-AND NANOSYSTEMS-INFORMATION STORAGE AND PROCESSING SYSTEMS | 2025年 / 31卷 / 08期
关键词
PHOTONIC CRYSTAL; PATCH ANTENNA; DESIGN; FREQUENCY;
D O I
10.1007/s00542-024-05832-7
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
This research presents a graphene-based three element linear array (GTELA) microstrip antenna with an octagonal shape for short-range terahertz (THz) wireless communication applications. The antenna utilizes a four-layer structure comprising a gold ground plate and patch, with quartz (SiO4) material serving as the substrate with a thickness of 140 mu m deposited on the gold ground plate. On this substrate, an octagonal three-element linear array patch made of gold is applied, and finally, a fourth layer of elliptical-shaped graphene, with a thickness of 10 nm, is deposited onto the gold patch plate. The GTELA antenna demonstrates good performance, with a reflection coefficient value of less than - 10 dB in the 0.285-0.535 THz range, resulting in a substantial 250 GHz bandwidth and the realized gain value is 5.25 dBi. Consequently, the GTELA antenna proves to be a promising candidate for multiple input multiple output (MIMO) communication setups. The configured GTELA enhances the overall performance of MIMO array antennas, especially quad-port (QP) configurations, where the THz GTELA antenna elements are organized orthogonally, accommodating four cells with cross-sectional area of 2155.71 x 2155.71 mu m2. The proposed THz MIMO array realizes a bandwidth of 260 GHz within 0.275 to 0.535 THz frequency range and maintains mutual coupling coefficient of below - 20 dB.
引用
收藏
页码:2015 / 2034
页数:20
相关论文
共 62 条
[21]  
Hammerstad E., 1975, 5th European Microwave Conference, P268
[22]   Wideband Circularly Polarized MIMO Antenna for High Data Wearable Biotelemetric Devices [J].
Iqbal, Amjad ;
Smida, Amor ;
Alazemi, Abdullah J. ;
Waly, Mohamed I. ;
Mallat, Nazih Khaddaj ;
Kim, Sunghwan .
IEEE ACCESS, 2020, 8 :17935-17944
[23]  
Itu, 2019, WORLD RAD C 2019
[24]   Graphene plasmonic nano-antenna for terahertz communication [J].
Kavitha, S. ;
Sairam, K. V. S. S. S. S. ;
Singh, Ashish .
SN APPLIED SCIENCES, 2022, 4 (04)
[25]   Plant shaped antenna with trigonometric half sine tapered leaves for THz applications [J].
Keshwala, Ushaben ;
Rawat, Sanyog ;
Ray, Kanad .
OPTIK, 2020, 223
[26]   MTM-Inspired Graphene-Based THz MIMO Antenna Configurations Using Characteristic Mode Analysis for 6G/IoT Applications [J].
Khaleel, Sherif A. ;
Hamad, Ehab K., I ;
Parchin, Naser Ojaroudi ;
Saleh, Mohamed B. .
ELECTRONICS, 2022, 11 (14)
[27]   Programmable Beam-Steering Capabilities Based on Graphene Plasmonic THz MIMO Antenna via Reconfigurable Intelligent Surfaces (RIS) for IoT Applications [J].
Khaleel, Sherif A. A. ;
Hamad, Ehab K. I. ;
Parchin, Naser Ojaroudi ;
Saleh, Mohamed B. B. .
ELECTRONICS, 2023, 12 (01)
[28]   A 210-227 GHz Transmitter With Integrated On-Chip Antenna in 90 nm CMOS Technology [J].
Khamaisi, Bassam ;
Jameson, Samuel ;
Socher, Eran .
IEEE TRANSACTIONS ON TERAHERTZ SCIENCE AND TECHNOLOGY, 2013, 3 (02) :141-150
[29]   Circularly Polarized Beam-Scanning Microstrip Antenna Using a Reconfigurable Parasitic Patch of Tunable Electrical Size [J].
Khidre, Ahmed ;
Yang, Fan ;
Elsherbeni, Atef Z. .
IEEE TRANSACTIONS ON ANTENNAS AND PROPAGATION, 2015, 63 (07) :2858-2866
[30]   Graphene-Based Quad-Port MIMO Reconfigurable Antennas for THz Applications [J].
Kiani, Narges ;
Hamedani, Farzad Tavakkol ;
Rezaei, Pejman .
SILICON, 2024, 16 (09) :3641-3655