Thermal cycling oxidation and interfacial cracking behavior of TBCs with a Y-doped multi-principal component NiCoCrAlFe bond coat

被引:1
作者
Liu, Xuanzhen [1 ]
Zhang, Han [1 ]
Li, Ling [1 ]
Huang, Aihui [1 ]
Luo, Lirong [1 ]
Guo, Fangwei [1 ]
Zhang, Xiancheng [2 ]
Lu, Jie [1 ]
Zhao, Xiaofeng [1 ]
机构
[1] Shanghai Jiao Tong Univ, Sch Mat Sci & Engn, Shanghai Key Lab Adv High Temp Mat & Precis Formin, Shanghai 200240, Peoples R China
[2] East China Univ Sci & Technol, Sch Mech & Power Engn, Key Lab Pressure Syst & Safety, Minist Educ, Shanghai 200237, Peoples R China
基金
中国国家自然科学基金;
关键词
Thermal barrier coatings; Multi-principal component bond coat; Interfacial cracking; Oxidation; Thermal cycling; HIGH ENTROPY ALLOYS; BARRIER COATINGS; FAILURE MECHANISMS; GROWN OXIDE; ALUMINIDE; MICROSTRUCTURE; SYSTEMS; PROGRESS; DIFFUSION; PLATINUM;
D O I
10.1016/j.surfcoat.2024.131676
中图分类号
TB3 [工程材料学];
学科分类号
0805 ; 080502 ;
摘要
This study investigates the thermal cycling oxidation and interfacial cracking behavior of thermal barrier coatings (TBCs) with NiCoCrAlFeY bond coats at 1100 degrees C, and compares it with YSZ/NiCoCrAlY TBCs. Two TBCs form continuous and dense thermally grown oxide (TGO), consisting of an outer spinel and an inner Al2O3. The spinel in YSZ/NiCoCrAlY TBCs is mainly composed of (Co, Ni)Al2O4, whereas (Ni, Co)(Fe, Cr)2O4 predominates in YSZ/NiCoCrAlFeY TBCs. Failure of TBCs is caused by cracking in ceramic layers near the top coat/TGO interface. The lifetime of YSZ/NiCoCrAlFeY TBCs is 2.8 times longer than that of YSZ/NiCoCrAlY TBCs, which is attributed to lower TGO growth rates, small amount of spinel and associated delay in the formation of larger interfacial cracking.
引用
收藏
页数:12
相关论文
共 61 条
[1]   Plasma-Sprayed High Entropy Alloys: Microstructure and Properties of AlCoCrFeNi and MnCoCrFeNi [J].
Ang, Andrew Siao Ming ;
Berndt, Christopher C. ;
Sesso, Mitchell L. ;
Anupam, Ameey ;
Praveen, S. ;
Kottada, Ravi Sankar ;
Murty, B. S. .
METALLURGICAL AND MATERIALS TRANSACTIONS A-PHYSICAL METALLURGY AND MATERIALS SCIENCE, 2015, 46A (02) :791-800
[2]   Understanding the microstructural evolution of high entropy alloy coatings manufactured by atmospheric plasma spray processing [J].
Anupam, Ameey ;
Kottada, Ravi Sankar ;
Kashyap, Sanjay ;
Meghwal, Ashok ;
Murty, B. S. ;
Berndt, C. C. ;
Ang, A. S. M. .
APPLIED SURFACE SCIENCE, 2020, 505
[3]   Physico-chemical properties and syngas production via dry reforming of methane over NiAl2O4 catalyst [J].
Benrabaa, Rafik ;
Barama, Akita ;
Boukhlouf, Hamza ;
Guerrero-Caballero, Jesus ;
Rubbens, Annick ;
Bordes-Richard, Elisabeth ;
Lofberg, Axel ;
Vannier, Rose-Noelle .
INTERNATIONAL JOURNAL OF HYDROGEN ENERGY, 2017, 42 (18) :12989-12996
[4]  
Birks N, 2006, INTRODUCTION TO THE HIGH-TEMPERATURE OXIDATION OF METALS, 2ND EDITION, P1, DOI 10.1017/CBO9781139163903
[5]   The effect of annealing on the microstructures and oxidation behaviors of AlCoCrFeNi complex concentrated alloys [J].
Butler, Todd M. ;
Pavel, Michael J. ;
Weaver, Mark L. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2023, 956
[6]   The growth and influence of thermally grown oxide in a thermal barrier coating [J].
Chen, W. R. ;
Wu, X. ;
Marple, B. R. ;
Patnaik, P. C. .
SURFACE & COATINGS TECHNOLOGY, 2006, 201 (3-4) :1074-1079
[7]   Effect of surface curvature on oxidation of a MCrAlY coating [J].
Chen, Ying ;
Zhao, Xiaofeng ;
Xiao, Ping .
CORROSION SCIENCE, 2020, 163
[8]   Effect of microstructure on early oxidation of MCrAlY coatings [J].
Chen, Ying ;
Zhao, Xiaofeng ;
Xiao, Ping .
ACTA MATERIALIA, 2018, 159 :150-162
[9]   Thermal-barrier coatings for more efficient gas-turbine engines [J].
Clarke, David R. ;
Oechsner, Matthias ;
Padture, Nitin P. .
MRS BULLETIN, 2012, 37 (10) :891-902
[10]   Microstructure and high temperature oxidation behavior of Pt-modified aluminide bond coats on Ni-base superalloys [J].
Das, D. K. .
PROGRESS IN MATERIALS SCIENCE, 2013, 58 (02) :151-182