Local discontinuous Galerkin methods with implicit-explicit BDF time marching for Newell-Whitehead-Segel equations

被引:0
|
作者
Wang, Haijin [1 ]
Shi, Xiaobin [1 ]
Shao, Rumeng [1 ]
Zhu, Hongqiang [1 ]
Chen, Yanping [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Newell-Whitehead-Segel equation; Dirichlet boundary condition; implicit-explicit backward difference formulas; local discontinuous Galerkin method; error estimate; FINITE-ELEMENT-METHOD; MULTISTEP METHODS; DIFFUSION PROBLEMS; LDG METHOD; STABILITY;
D O I
10.1080/00207160.2024.2423658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Newell-Whitehead-Segel type equations with time-dependent Dirichlet boundary conditions are solved by the local discontinuous Galerkin (LDG) method coupled with the implicit-explicit backward difference formulas (IMEX-BDF). With a suitable setting of numerical fluxes and by the aid of the multiplier technique and the a priori error assumption technique, the optimal error estimate for the corresponding fully discrete LDG-IMEX-BDF schemes is obtained by energy analysis, under the condition $ \tau \le C h<^>{1/s} $ tau <= Ch1/s, where h and tau are mesh size and time step, respectively, the positive constant C is independent of h, and $ s=1,\ldots, 5 $ s=1,& mldr;,5 is the order of the IMEX-BDF method. Numerical experiments are also presented to verify the accuracy of the considered schemes.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 50 条