Local discontinuous Galerkin methods with implicit-explicit BDF time marching for Newell-Whitehead-Segel equations

被引:0
|
作者
Wang, Haijin [1 ]
Shi, Xiaobin [1 ]
Shao, Rumeng [1 ]
Zhu, Hongqiang [1 ]
Chen, Yanping [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Newell-Whitehead-Segel equation; Dirichlet boundary condition; implicit-explicit backward difference formulas; local discontinuous Galerkin method; error estimate; FINITE-ELEMENT-METHOD; MULTISTEP METHODS; DIFFUSION PROBLEMS; LDG METHOD; STABILITY;
D O I
10.1080/00207160.2024.2423658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Newell-Whitehead-Segel type equations with time-dependent Dirichlet boundary conditions are solved by the local discontinuous Galerkin (LDG) method coupled with the implicit-explicit backward difference formulas (IMEX-BDF). With a suitable setting of numerical fluxes and by the aid of the multiplier technique and the a priori error assumption technique, the optimal error estimate for the corresponding fully discrete LDG-IMEX-BDF schemes is obtained by energy analysis, under the condition $ \tau \le C h<^>{1/s} $ tau <= Ch1/s, where h and tau are mesh size and time step, respectively, the positive constant C is independent of h, and $ s=1,\ldots, 5 $ s=1,& mldr;,5 is the order of the IMEX-BDF method. Numerical experiments are also presented to verify the accuracy of the considered schemes.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 50 条
  • [31] UNIFORM STABILITY FOR LOCAL DISCONTINUOUS GALERKIN METHODS WITH IMPLICIT-EXPLICIT RUNGE-KUTTA TIME DISCRETIZATIONS FOR LINEAR CONVECTION-DIFFUSION EQUATION
    Wang, Haijin
    Li, Fengyan
    Shu, Chi-wang
    Zhang, Qiang
    MATHEMATICS OF COMPUTATION, 2023, 92 (344) : 2475 - 2513
  • [32] LOCAL TIME STEPPING APPLIED TO IMPLICIT-EXPLICIT METHODS FOR HYPERBOLIC SYSTEMS
    Coquel, Frederic
    Nguyen, Quang Long
    Postel, Marie
    Tran, Quang Huy
    MULTISCALE MODELING & SIMULATION, 2010, 8 (02): : 540 - 570
  • [33] Implicit-Explicit Backward Difference Formulae Discontinuous Galerkin Finite Element Methods for Convection Diffusion Problems
    Vlasak, Miloslav
    Dolejsi, Vit
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS 2009, 2010, : 921 - 928
  • [34] Application of implicit-explicit high order Runge-Kutta methods to discontinuous-Galerkin schemes
    Kanevsky, Alex
    Carpenter, Mark H.
    Gottlieb, David
    Hesthaven, Jan S.
    JOURNAL OF COMPUTATIONAL PHYSICS, 2007, 225 (02) : 1753 - 1781
  • [35] A Stable Discontinuous Galerkin Time-Domain Method With Implicit Explicit Time-Marching for Lossy Media
    Xiang, Ru
    Ma, Xikui
    Ma, Liang
    Chi, Mingjun
    Wang, Jiawei
    IEEE TRANSACTIONS ON MAGNETICS, 2024, 60 (12)
  • [36] A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations
    Samii, Ali
    Kazhyken, Kazbek
    Michoski, Craig
    Dawson, Clint
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 80 (03) : 1936 - 1956
  • [37] A Comparison of the Explicit and Implicit Hybridizable Discontinuous Galerkin Methods for Nonlinear Shallow Water Equations
    Ali Samii
    Kazbek Kazhyken
    Craig Michoski
    Clint Dawson
    Journal of Scientific Computing, 2019, 80 : 1936 - 1956
  • [38] Comparison of implicit-explicit and Newton linearized variable two-step BDF methods for semilinear parabolic equations
    Wang, Wansheng
    Jin, Chengyu
    Huang, Yi
    Li, Linhai
    Zhang, Chun
    COMPUTATIONAL & APPLIED MATHEMATICS, 2023, 42 (01):
  • [39] LONG-TIME ACCURATE SYMMETRIZED IMPLICIT-EXPLICIT BDF METHODS FOR A CLASS OF PARABOLIC EQUATIONS WITH NON-SELF-ADJOINT OPERATORS
    Li, Buyang
    Wang, Kai
    Zhou, Zhi
    SIAM JOURNAL ON NUMERICAL ANALYSIS, 2020, 58 (01) : 189 - 210
  • [40] A Posteriori Error Analysis for Implicit-Explicit hp-Discontinuous Galerkin Timestepping Methods for Semilinear Parabolic Problems
    Cangiani, Andrea
    Georgoulis, Emmanuil H.
    Sabawi, Mohammad
    JOURNAL OF SCIENTIFIC COMPUTING, 2020, 82 (02)