Local discontinuous Galerkin methods with implicit-explicit BDF time marching for Newell-Whitehead-Segel equations

被引:0
|
作者
Wang, Haijin [1 ]
Shi, Xiaobin [1 ]
Shao, Rumeng [1 ]
Zhu, Hongqiang [1 ]
Chen, Yanping [1 ]
机构
[1] Nanjing Univ Posts & Telecommun, Sch Sci, Nanjing 210023, Jiangsu, Peoples R China
基金
中国国家自然科学基金;
关键词
Newell-Whitehead-Segel equation; Dirichlet boundary condition; implicit-explicit backward difference formulas; local discontinuous Galerkin method; error estimate; FINITE-ELEMENT-METHOD; MULTISTEP METHODS; DIFFUSION PROBLEMS; LDG METHOD; STABILITY;
D O I
10.1080/00207160.2024.2423658
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
The Newell-Whitehead-Segel type equations with time-dependent Dirichlet boundary conditions are solved by the local discontinuous Galerkin (LDG) method coupled with the implicit-explicit backward difference formulas (IMEX-BDF). With a suitable setting of numerical fluxes and by the aid of the multiplier technique and the a priori error assumption technique, the optimal error estimate for the corresponding fully discrete LDG-IMEX-BDF schemes is obtained by energy analysis, under the condition $ \tau \le C h<^>{1/s} $ tau <= Ch1/s, where h and tau are mesh size and time step, respectively, the positive constant C is independent of h, and $ s=1,\ldots, 5 $ s=1,& mldr;,5 is the order of the IMEX-BDF method. Numerical experiments are also presented to verify the accuracy of the considered schemes.
引用
收藏
页码:465 / 479
页数:15
相关论文
共 50 条
  • [21] Fast time implicit-explicit discontinuous Galerkin method for the compressible Navier-Stokes equations
    Renac, Florent
    Gerald, Sophie
    Marmignon, Claude
    Coquel, Frederic
    JOURNAL OF COMPUTATIONAL PHYSICS, 2013, 251 : 272 - 291
  • [22] An Implicit-Explicit Local Discontinuous Galerkin Scheme for Analysis of Organic Electrochemical Transistors
    Dong, Ming
    Chen, Liang
    Bagci, Hakan
    2021 INTERNATIONAL APPLIED COMPUTATIONAL ELECTROMAGNETICS SOCIETY SYMPOSIUM (ACES), 2021,
  • [23] Implicit-Explicit Local Discontinuous Galerkin Methods with Generalized Alternating Numerical Fluxes for Convection-Diffusion Problems
    Wang, Haijin
    Zhang, Qiang
    Shu, Chi-Wang
    JOURNAL OF SCIENTIFIC COMPUTING, 2019, 81 (03) : 2080 - 2114
  • [24] Local discontinuous Galerkin method coupled with the implicit-explicit Runge-Kutta method for the time-dependent micropolar fluid equations
    Li, Mengqi
    Liu, Demin
    INTERNATIONAL JOURNAL FOR NUMERICAL METHODS IN FLUIDS, 2024, 96 (07) : 1137 - 1155
  • [25] Local Discontinuous Galerkin Method with Implicit–Explicit Time Marching for Incompressible Miscible Displacement Problem in Porous Media
    Haijin Wang
    Jingjing Zheng
    Fan Yu
    Hui Guo
    Qiang Zhang
    Journal of Scientific Computing, 2019, 78 : 1 - 28
  • [26] FAST TIME IMPLICIT-EXPLICIT DISCONTINUOUS GALERKIN METHOD FOR CONVECTION DOMINATED FLOW PROBLEMS
    Renac, Florent
    Marmignon, Claude
    Coquel, Frederic
    COMMUNICATIONS IN MATHEMATICAL SCIENCES, 2012, 10 (04) : 1161 - 1172
  • [27] Implicit-Explicit Wave Equation-Based Discontinuous Galerkin Time Domain Method
    Sun, Qingtao
    Liu, Qing Huo
    Hu, Yunyun
    IEEE ANTENNAS AND WIRELESS PROPAGATION LETTERS, 2024, 23 (12): : 4887 - 4891
  • [28] Local discontinuous Galerkin methods with explicit Runge-Kutta time marching for nonlinear carburizing model
    Xia, Chenghui
    Li, Ying
    Wang, Haijin
    MATHEMATICAL METHODS IN THE APPLIED SCIENCES, 2018, 41 (12) : 4376 - 4390
  • [29] Local Time Stepping for Implicit-Explicit Methods on Time Varying Grids
    Coquel, F.
    Nguyen, Q. -L.
    Postel, M.
    Tran, Q. -H.
    NUMERICAL MATHEMATICS AND ADVANCED APPLICATIONS, 2008, : 257 - +
  • [30] An Ultra-Weak Discontinuous Galerkin Method with Implicit–Explicit Time-Marching for Generalized Stochastic KdV Equations
    Yunzhang Li
    Chi-Wang Shu
    Shanjian Tang
    Journal of Scientific Computing, 2020, 82