Comparison of deep learning schemes in grading non-alcoholic fatty liver disease using B-mode ultrasound hepatorenal window images with liver biopsy as the gold standard

被引:1
作者
Drazinos, Petros [1 ,3 ]
Gatos, Ilias [1 ]
Katsakiori, Paraskevi F. [1 ]
Tsantis, Stavros [1 ]
Syrmas, Efstratios [1 ]
Spiliopoulos, Stavros [4 ]
Karnabatidis, Dimitris [5 ]
Theotokas, Ioannis [3 ]
Zoumpoulis, Pavlos [3 ]
Hazle, John D. [2 ]
Kagadis, George C. [1 ,2 ]
机构
[1] Univ Patras, Sch Med, Dept Med Phys, Res Grp 3DMI, GR-26504 Rion, Greece
[2] Univ Texas MD Anderson Canc Ctr, Dept Imaging Phys, Houston, TX 77030 USA
[3] Diagnost Echotomog SA, GR-14561 Kifisia, Greece
[4] Univ Athens, Sch Med, Dept Radiol 2, GR-12461 Athens, Greece
[5] Univ Patras, Sch Med, Dept Radiol, GR 26504 Patras, Greece
来源
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS | 2025年 / 129卷
关键词
Chronic liver disease; Hepatic steatosis; B -mode ultrasound; Pre-trained deep learning schemes; CONTROLLED ATTENUATION PARAMETER; NONINVASIVE ASSESSMENT; HEPATIC STEATOSIS; NEURAL-NETWORKS; DIAGNOSIS; INDEX; CAP; ULTRASONOGRAPHY; QUANTIFICATION; RELIABILITY;
D O I
10.1016/j.ejmp.2024.104862
中图分类号
R8 [特种医学]; R445 [影像诊断学];
学科分类号
1002 ; 100207 ; 1009 ;
摘要
Background/Introduction: To evaluate the performance of pre-trained deep learning schemes (DLS) in hepatic steatosis (HS) grading of Non-Alcoholic Fatty Liver Disease (NAFLD) patients, using as input B-mode US images containing right kidney (RK) cortex and liver parenchyma (LP) areas indicated by an expert radiologist. Methods: A total of 112 consecutively enrolled, biopsy-validated NAFLD patients underwent a regular abdominal B-mode US examination. For each patient, a radiologist obtained a B-mode US image containing RK cortex and LP and marked a point between the RK and LP, around which a window was automatically cropped. The cropped image dataset was augmented using up-sampling, and the augmented and non-augmented datasets were sorted by HS grade. Each dataset was split into training (70%) and testing (30%), and fed separately as input to InceptionV3, MobileNetV2, ResNet50, DenseNet201, and NASNetMobile pre-trained DLS. A receiver operating characteristic (ROC) analysis of hepatorenal index (HRI) measurements by the radiologist from the same cropped images was used for comparison with the performance of the DLS. Results: With the test data, the DLS reached 89.15 %-93.75 % accuracy when comparing HS grades S0-S1 vs. S2-S3 and 79.69 %-91.21 % accuracy for S0 vs. S1 vs. S2 vs. S3 with augmentation, and 80.45-82.73 % accuracy when comparing S0-S1 vs. S2-S3 and 59.54 %-63.64 % accuracy for S0 vs. S1 vs. S2 vs. S3 without augmentation. The performance of radiologists' HRI measurement after ROC analysis was 82 %, 91.56 %, and 96.19 % for thresholds of S >= S1, S >= S2, and S = S3, respectively. Conclusion: All networks achieved high performance in HS assessment. DenseNet201 with the use of augmented data seems to be the most efficient supplementary tool for NAFLD diagnosis and grading.
引用
收藏
页数:7
相关论文
共 57 条
[1]   Ultrasonic Adaptive Sound Speed Estimation for the Diagnosis and Quantification of Hepatic Steatosis: A Pilot Study [J].
Burgio, Marco Dioguardi ;
Imbault, Marion ;
Ronot, Maxime ;
Faccinetto, Alex ;
Van Beers, Bernard E. ;
Rautou, Pierre-Emmanuel ;
Castera, Laurent ;
Gennisson, Jean-Luc ;
Tanter, Mickael ;
Vilgrain, Valerie .
ULTRASCHALL IN DER MEDIZIN, 2019, 40 (06) :722-733
[2]   Transfer learning with deep convolutional neural network for liver steatosis assessment in ultrasound images [J].
Byra, Michal ;
Styczynski, Grzegorz ;
Szmigielski, Cezary ;
Kalinowski, Piotr ;
Michalowski, Lukasz ;
Paluszkiewicz, Rafal ;
Ziarkiewicz-Wroblewska, Bogna ;
Zieniewicz, Krzysztof ;
Sobieraj, Piotr ;
Nowicki, Andrzej .
INTERNATIONAL JOURNAL OF COMPUTER ASSISTED RADIOLOGY AND SURGERY, 2018, 13 (12) :1895-1903
[3]   Application of Deep Learning in Quantitative Analysis of 2-Dimensional Ultrasound Imaging of Nonalcoholic Fatty Liver Disease [J].
Cao, Wen ;
An, Xing ;
Cong, Longfei ;
Lyu, Chaoyang ;
Zhou, Qian ;
Guo, Ruijun .
JOURNAL OF ULTRASOUND IN MEDICINE, 2020, 39 (01) :51-59
[4]  
Charatcharoenwitthaya Phunchai, 2007, Clin Liver Dis, V11, P37, DOI 10.1016/j.cld.2007.02.014
[5]  
Cheng YF, 2014, TRANSPLANTATION, V97, pS3, DOI [10.1097/TP.0000000000000060, 10.1097/01.tp.0000446265.42019.f3]
[6]  
Chivers R C, 1975, Ultrasound Med Biol, V2, P25, DOI 10.1016/0301-5629(75)90038-1
[7]   Sonographic hepatorenal ratio: A noninvasive method to diagnose nonalcoholic steatosis [J].
de Almeida e Borges, Valeria Ferreira ;
Diniz, Angelica L. D. ;
Cotrim, Helma P. ;
Rocha, Haroldo L. O. G. ;
Andrade, Nestor Barbosa .
JOURNAL OF CLINICAL ULTRASOUND, 2013, 41 (01) :18-25
[8]   Non-invasive diagnosis of liver steatosis using controlled attenuation parameter (CAP) and transient elastography [J].
de Ledinghen, Victor ;
Vergniol, Julien ;
Foucher, Juliette ;
Merrouche, Wassil ;
le Bail, Brigitte .
LIVER INTERNATIONAL, 2012, 32 (06) :911-918
[9]  
Ficatul BR, 2000, Tratat de Ultrasonografie Clinica, P105
[10]   A new method for attenuation coefficient measurement in the liver - Comparison with the spectral shift central frequency method [J].
Fujii, Y ;
Taniguchi, N ;
Itoh, K ;
Shigeta, K ;
Wang, Y ;
Tsao, JW ;
Kumasaki, K ;
Itoh, T .
JOURNAL OF ULTRASOUND IN MEDICINE, 2002, 21 (07) :783-788