Advancing the diagnosis of major depressive disorder: Integrating neuroimaging and machine learning

被引:0
作者
Yin, Shi-Qi [1 ]
Li, Ying-Huan [1 ]
机构
[1] Capital Med Univ, Sch Pharmaceut Sci, 10 Xitoutiao,Youanmen Outer, Beijing 100069, Peoples R China
来源
WORLD JOURNAL OF PSYCHIATRY | 2025年 / 15卷 / 03期
关键词
Major depressive disorder; Biomarkers; Neuroimaging; Machine learning; Personalized treatment; Resting-state functional magnetic resonance imaging; Functional connectivity; Model accuracy; Major depressive disorder diagnosis; STATE FUNCTIONAL CONNECTIVITY; LOW-FREQUENCY FLUCTUATIONS; ADOLESCENT DEPRESSION; UNIPOLAR DEPRESSION; MRI; CLASSIFICATION; METAANALYSIS; AMPLITUDE; DISEASE; BURDEN;
D O I
10.5498/wjp.v15.i3.103321
中图分类号
R749 [精神病学];
学科分类号
100205 ;
摘要
Major depressive disorder (MDD), a psychiatric disorder characterized by functional brain deficits, poses considerable diagnostic and treatment challenges, especially in adolescents owing to varying clinical presentations. Biomarkers hold substantial clinical potential in the field of mental health, enabling objective assessments of physiological and pathological states, facilitating early diagnosis, and enhancing clinical decision-making and patient outcomes. Recent breakthroughs combine neuroimaging with machine learning (ML) to distinguish brain activity patterns between MDD patients and healthy controls, paving the way for diagnostic support and personalized treatment. However, the accuracy of the results depends on the selection of neuroimaging features and algorithms. Ensuring privacy protection, ML model accuracy, and fostering trust are essential steps prior to clinical implementation. Future research should prioritize the establishment of comprehensive legal frameworks and regulatory mechanisms for using ML in MDD diagnosis while safeguarding patient privacy and rights. By doing so, we can advance accuracy and personalized care for MDD.
引用
收藏
页数:10
相关论文
共 80 条
[1]   Escitalopram ameliorates differences in neural activity between healthy comparison and major depressive disorder groups on an fMRI Emotional conflict task: A CAN-BIND-1 study [J].
Alders, Gesine L. ;
Davis, Andrew D. ;
MacQueen, Glenda ;
Strother, Stephen C. ;
Hassel, Stefanie ;
Zamyadi, Mojdeh ;
Sharma, Gulshan B. ;
Arnott, Stephen R. ;
Downar, Jonathan ;
Harris, Jacqueline K. ;
Lam, Raymond W. ;
Milev, Roumen ;
Muller, Daniel J. ;
Ravindrann, Arun ;
Kennedy, Sidney H. ;
Frey, Benicio N. ;
Minuzzi, Luciano ;
Hall, Geoffrey B. .
JOURNAL OF AFFECTIVE DISORDERS, 2020, 264 :414-424
[2]   How should we think about clinical data ownership? [J].
Ballantyne, Angela .
JOURNAL OF MEDICAL ETHICS, 2020, 46 (05) :289-294
[3]   Societal burden of adolescent depression, an overview and cost-of-illness study [J].
Bodden, D. H. M. ;
Stikkelbroek, Y. ;
Dirksen, C. D. .
JOURNAL OF AFFECTIVE DISORDERS, 2018, 241 :256-262
[4]   Putting the data before the algorithm in big data addressing personalized healthcare [J].
Cahan, Eli M. ;
Hernandez-Boussard, Tina ;
Thadaney-Israni, Sonoo ;
Rubin, Daniel L. .
NPJ DIGITAL MEDICINE, 2019, 2 (1)
[5]   Gradient distortions in MRI: Characterizing and correcting for their effects on SIENA-generated measures of brain volume change [J].
Caramanos, Zografos ;
Fonov, Vladimir S. ;
Francis, Simon J. ;
Narayanan, Sridar ;
Pike, G. Bruce ;
Collins, D. Louis ;
Arnold, Douglas L. .
NEUROIMAGE, 2010, 49 (02) :1601-1611
[6]   Implementing Machine Learning in Health Care - Addressing Ethical Challenges [J].
Char, Danton S. ;
Shah, Nigam H. ;
Magnus, David .
NEW ENGLAND JOURNAL OF MEDICINE, 2018, 378 (11) :981-983
[7]   Cross-trial prediction of treatment outcome in depression: a machine learning approach [J].
Chekroud, Adam Mourad ;
Zotti, Ryan Joseph ;
Shehzad, Zarrar ;
Gueorguieva, Ralitza ;
Johnson, Marcia K. ;
Trivedi, Madhukar H. ;
Cannon, Tyrone D. ;
Krystal, John Harrison ;
Corlett, Philip Robert .
LANCET PSYCHIATRY, 2016, 3 (03) :243-250
[8]  
Chun JY, 2020, IEEE ENG MED BIO, P1424, DOI 10.1109/EMBC44109.2020.9175685
[9]   Systematic Review and Meta-Analysis: Adolescent Depression and Long-Term Psychosocial Outcomes [J].
Clayborne, Zahra M. ;
Varin, Melanie ;
Colman, Ian .
JOURNAL OF THE AMERICAN ACADEMY OF CHILD AND ADOLESCENT PSYCHIATRY, 2019, 58 (01) :72-79
[10]   Data preparation for artificial intelligence in medical imaging: A comprehensive guide to open-access platforms and tools [J].
Diaz, Oliver ;
Kushibar, Kaisar ;
Osuala, Richard ;
Linardos, Akis ;
Garrucho, Lidia ;
Igual, Laura ;
Radeva, Petia ;
Prior, Fred ;
Gkontra, Polyxeni ;
Lekadir, Karim .
PHYSICA MEDICA-EUROPEAN JOURNAL OF MEDICAL PHYSICS, 2021, 83 :25-37