Incorporating crop rotation into the winter wheat-summer maize system to enhance soil multifunctionality and sustainable grain production in the North China Plain

被引:0
|
作者
Yang, Jie [1 ,2 ,3 ,4 ]
Zhang, Sijia [1 ,2 ,3 ]
Zhang, Jianheng [1 ,2 ,3 ,4 ]
Zhao, Shuai [1 ,2 ,3 ]
Lu, Haitao [1 ,2 ,3 ,4 ]
Li, Liwei [1 ,2 ,3 ]
Liu, Liantao [1 ,2 ,3 ,4 ]
Wang, Guiyan [1 ,2 ,3 ]
机构
[1] State Key Lab North China Crop Improvement & Regul, Baoding 071000, Peoples R China
[2] Hebei Agr Univ, Coll Agron, Baoding 071000, Peoples R China
[3] Key Lab Crop Growth Regulat Hebei Prov, Baoding 071000, Peoples R China
[4] Minist Agr & Rural Affairs, Key Lab North China Water Saving Agr, Baoding 071001, Peoples R China
关键词
Crop rotation; Soil multifunctionality; Microbial diversity; Soil organic carbon; Sustainable grain production; DIFFERENT TILLAGE SYSTEMS; ORGANIC-CARBON; ENZYME-ACTIVITY; YIELD; PLANT; MANAGEMENT; DIVERSITY; STABILITY;
D O I
10.1016/j.fcr.2025.109834
中图分类号
S3 [农学(农艺学)];
学科分类号
0901 ;
摘要
Context: The winter wheat-summer maize double cropping system has long been a dominant practice in the North China Plain. However, its continuous use has led to soil fertility decline, biodiversity losses, and nutrient imbalances, thus threatening grain production sustainability. Crop rotations are of great essential to enhance soil health and resilience, but its benefits for the winter wheat-summer maize system in this region remain poorly understood. Objective: This study evaluates the effects of incorporating crop rotations into the winter wheat-summer maize system to mitigate soil degradation, enhance soil multifunctionality (SMF), and maintain high grain yield production. Method: A field experiment (2018-2022) compared three crop rotation systems, spring sweet potato-* winter wheat-summer maize (Psw-WM), spring peanut-* winter wheat-summer maize (Pns-WM), and spring sorghum-* winter wheat-summer maize (Sor-WM), against continuous wheat-maize cropping (WM-WM). The winter wheat and summer maize yields were assessed annually, and soil physicochemical properties, enzyme activities, and rhizosphere microbial communities were analyzed during the second crop cycle to assess SMF. Results: Compared to WM-WM, the Pns-WM and Psw-WM significantly increased annual winter wheat and summer maize yields by 8.12 %-11.39 % and 8.78 %-15.82 %, respectively. Compared to WM-WM, these rotations (Pns-WM and Psw-WM) enhanced SMF by 1- to 2-fold due to increased soil organic carbon (SOC), improved enzyme activities, and better nutrient cycling. The lower pH and higher bacterial and fungal richness (e.g. ACE indices) were found in Pns-WM and Psw-WM, as compared to WM-WM. Furthermore, Pns-WM increased beneficial genus such as Penicillium and Fusarium while reducing pathogenic taxa like Alternaria. Partial least squares structural equation modeling illustrated that improved SOC, enzyme activities, and microbial diversity drove the increases in SMF and grain yield in the Pns-WM and Psw-WM. Conclusion: Integrating peanut or sweet potato into the winter wheat-summer maize system effectively enhances soil health, SMF, and grain yield. Thus, introducing annual crops as preceding crops to the current WM-WM rotation is beneficial for fostering microbial diversity and enzyme activities, improving soil properties, enhancing grain yield, and providing a sustainable pathway for resilient food production in the NCP and similar agroecosystems.
引用
收藏
页数:14
相关论文
共 50 条
  • [31] Improving water use efficiency in grain production of winter wheat and summer maize in the North China Plain: a review
    Zhang, Xiying
    Qin, Wenli
    Xie, Juanna
    FRONTIERS OF AGRICULTURAL SCIENCE AND ENGINEERING, 2016, 3 (01) : 25 - 33
  • [32] Water Leakage and Nitrate Leaching Characteristics in the Winter Wheat-Summer Maize Rotation System in the North China Plain under Different Irrigation and Fertilization Management Practices
    Chen, Shufeng
    Sun, Chengchun
    Wu, Wenliang
    Sun, Changhong
    WATER, 2017, 9 (02):
  • [33] Performance of double-cropped winter wheat-summer maize under minimum irrigation in the North China Plain
    Zhang, Xiying
    Pei, Dong
    Chen, Suying
    Sun, Hongyong
    Yang, Yonghui
    AGRONOMY JOURNAL, 2006, 98 (06) : 1620 - 1626
  • [34] Spatial-temporal variation in irrigation water requirement for the winter wheat-summer maize rotation system since the 1980s on the North China Plain
    Wu, Dong
    Fang, Shibo
    Li, Xuan
    He, Di
    Zhu, Yongchao
    Yang, Zaiqiang
    Xu, Jiaxin
    Wu, Yingjie
    AGRICULTURAL WATER MANAGEMENT, 2019, 214 : 78 - 86
  • [35] Tillage effects on carbon footprint and ecosystem services of climate regulation in a winter wheat-summer maize cropping system of the North China Plain
    Zhang, Xiang-Qian
    Pu, Chao
    Zhao, Xin
    Xue, Jian-Fu
    Zhang, Ran
    Nie, Zi-Jin
    Chen, Fu
    Lal, Rattan
    Zhang, Hai-Lin
    ECOLOGICAL INDICATORS, 2016, 67 : 821 - 829
  • [36] Straw return strategies to improve soil properties and crop productivity in a winter wheat-summer maize cropping system
    Cui, Haixing
    Luo, Yongli
    Chen, Jin
    Jin, Min
    Li, Yong
    Wang, Zhenlin
    EUROPEAN JOURNAL OF AGRONOMY, 2022, 133
  • [37] Carbon budget of a winter-wheat and summer-maize rotation cropland in the North China Plain
    Wang, Yuying
    Hu, Chunsheng
    Dong, Wenxu
    Li, Xiaoxin
    Zhang, Yuming
    Qin, Shuping
    Oenema, Oene
    AGRICULTURE ECOSYSTEMS & ENVIRONMENT, 2015, 206 : 33 - 45
  • [38] Patterns and causes of winter wheat and summer maize rotation area change over the North China Plain
    Liu, Zhengjia
    Liu, Yansui
    Dong, Jinwei
    Baig, Muhammad Hasan Ali
    Chi, Wenfeng
    Peng, Liuying
    Wang, Jieyong
    ENVIRONMENTAL RESEARCH LETTERS, 2022, 17 (04):
  • [39] Identifying the critical phosphorus balance for optimizing phosphorus input and regulating soil phosphorus effectiveness in a typical winter wheat-summer maize rotation system in North China
    Xu, Meng-ze
    Wang, Yu-hong
    Nie, Cai-e
    Song, Gui-pei
    Xin, Su-ning
    Lu, Yan-li
    Bai, You-lu
    Zhang, Yin-jie
    Wang, Lei
    JOURNAL OF INTEGRATIVE AGRICULTURE, 2023, 22 (12) : 3769 - 3782
  • [40] Managing nitrogen for sustainable crop production with reduced hydrological nitrogen losses under a winter wheat-summer maize rotation system: an eight-season field study
    Wang, Li
    Ma, Lei
    Li, Yan
    Geilfus, Christoph-Martin
    Wei, Jianlin
    Zheng, Fuli
    Liu, Zhaohui
    Tan, Deshui
    FRONTIERS IN PLANT SCIENCE, 2023, 14