Fractional Hadamard-type inequalities for refined (α, h - m) -p-convex functions and their consequences

被引:0
作者
Zahra, Moquddsa [1 ]
Ashraf, Muhammad [1 ]
Farid, Ghulam [2 ]
Hussain, Nawab [3 ]
机构
[1] Univ Wah, Dept Math, Wah Cantt, Pakistan
[2] COMSATS Univ Islamabad, Dept Math, Attock Campus, Islamabad 43600, Pakistan
[3] King AbdulAziz Univ, Dept Math, Jeddah, Saudi Arabia
关键词
INTEGRAL-INEQUALITIES;
D O I
10.2298/FIL2415463Z
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, a new class of convex functions namely refined (alpha, h - m) -p-convex functions is introduced. By utilizing this new definition, several refinements of different kinds of convex functions are derived. Further, Riemann-Liouville fractional integral operator is utilized to establish Hadamard-type inequalities for this class of convex functions. Furthermore, their connection with already known fractional Hadamard inequalities is established.
引用
收藏
页码:5463 / 5474
页数:12
相关论文
共 34 条
  • [1] Anastassiou GA, 2013, FACTA UNIV-SER MATH, V28, P107
  • [2] SOME NEW CLASSES OF CONVEX FUNCTIONS AND INEQUALITIES
    Awan, Muhammad Uzair
    Noor, Muhammad Aslam
    Noor, Khalida Inayat
    Khan, Awais Gul
    [J]. MISKOLC MATHEMATICAL NOTES, 2018, 19 (01) : 77 - 94
  • [3] Bakula M. K., 2008, JIPAM, V9
  • [4] Properties of h-convex functions related to the Hermite-Hadamard-Fejer inequalities
    Bombardelli, Mea
    Varosanec, Sanja
    [J]. COMPUTERS & MATHEMATICS WITH APPLICATIONS, 2009, 58 (09) : 1869 - 1877
  • [5] Breckner W.W., 1978, Publ. Inst. Math. (Beograd) (N.S.), V23, P13
  • [6] Dragomir S.S., 1995, Soochow J Math, V21, P335
  • [7] Farid G., 2017, Open J. Math. Sci, V1, P97, DOI [10.30538/oms2017.0010, DOI 10.30538/OMS2017.0010]
  • [8] Farid G., On fractional integral inequalities for Reimann-Liouville integrals of refined (, h-m)-convex functions
  • [9] k-fractional integral inequalities of Hadamard type for (h-m)-convex functions
    Farid, Ghulam
    Rehman, Atiq Ur
    Ul Ain, Qurat
    [J]. COMPUTATIONAL METHODS FOR DIFFERENTIAL EQUATIONS, 2020, 8 (01): : 119 - 140
  • [10] Ha G., Refinements and generalizations of some fractional integral inequalities via strongly convex functions