DATR: Unsupervised Domain Adaptive Detection Transformer With Dataset-Level Adaptation and Prototypical Alignment

被引:0
|
作者
Chen, Liang [1 ,2 ,3 ]
Han, Jianhong [1 ,2 ,3 ]
Wang, Yupei [1 ,2 ,3 ]
机构
[1] Beijing Inst Technol, Sch Informat & Elect, Beijing 100081, Peoples R China
[2] Chongqing Innovat Ctr, Beijing Inst Technol, Chongqing 401135, Peoples R China
[3] Natl Key Lab Space Born Intelligent Informat Proc, Beijing 100081, Peoples R China
基金
中国国家自然科学基金;
关键词
Unsupervised domain adaptation; object detection;
D O I
10.1109/TIP.2025.3527370
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
With the success of the DEtection TRansformer (DETR), numerous researchers have explored its effectiveness in addressing unsupervised domain adaptation tasks. Existing methods leverage carefully designed feature alignment techniques to align the backbone or encoder, yielding promising results. However, effectively aligning instance-level features within the unique decoder structure of the detector has largely been neglected. Related techniques primarily align instance-level features in a class-agnostic manner, overlooking distinctions between features from different categories, which results in only limited improvements. Furthermore, the scope of current alignment modules in the decoder is often restricted to a limited batch of images, failing to capture the dataset-level cues, thereby severely constraining the detector's generalization ability to the target domain. To this end, we introduce a strong DETR-based detector named Domain Adaptive detection TRansformer (DATR) for unsupervised domain adaptation of object detection. First, we propose the Class-wise Prototypes Alignment (CPA) module, which effectively aligns cross-domain features in a class-aware manner by bridging the gap between the object detection task and the domain adaptation task. Then, the designed Dataset-level Alignment Scheme (DAS) explicitly guides the detector to achieve global representation and enhance inter-class distinguishability of instance-level features across the entire dataset, which spans both domains, by leveraging contrastive learning. Moreover, DATR incorporates a mean-teacher-based self-training framework, utilizing pseudo-labels generated by the teacher model to further mitigate domain bias. Extensive experimental results demonstrate superior performance and generalization capabilities of our proposed DATR in multiple domain adaptation scenarios. Code is released at https://github.com/h751410234/DATR.
引用
收藏
页码:982 / 994
页数:13
相关论文
共 50 条
  • [21] MetaAlign: Coordinating Domain Alignment and Classification for Unsupervised Domain Adaptation
    Wei, Guoqiang
    Lan, Cuiling
    Zeng, Wenjun
    Chen, Zhibo
    2021 IEEE/CVF CONFERENCE ON COMPUTER VISION AND PATTERN RECOGNITION, CVPR 2021, 2021, : 16638 - 16648
  • [22] Just DIAL: DomaIn Alignment Layers for Unsupervised Domain Adaptation
    Carlucci, Fabio Maria
    Porzi, Lorenzo
    Caputo, Barbara
    Ricci, Elisa
    Bulo, Samuel Rota
    IMAGE ANALYSIS AND PROCESSING,(ICIAP 2017), PT I, 2017, 10484 : 357 - 369
  • [23] Enhanced Prototypical Learning for Unsupervised Domain Adaptation in LiDAR Semantic Segmentation
    Yi, Eojindl
    Yang, JuYoung
    Kim, Junmo
    2022 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION, ICRA 2022, 2022, : 7058 - 7064
  • [24] Prototypical Interaction Graph for Unsupervised Domain Adaptation in Surgical Instrument Segmentation
    Liu, Jie
    Guo, Xiaoqing
    Yuan, Yixuan
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION - MICCAI 2021, PT III, 2021, 12903 : 272 - 281
  • [25] Unsupervised Domain-Adaptive Object Detection via Localization Regression Alignment
    Piao, Zhengquan
    Tang, Linbo
    Zhao, Baojun
    IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2024, 35 (11) : 15170 - 15181
  • [26] Spatial Alignment for Unsupervised Domain Adaptive Single-Stage Object Detection
    Liang, Hong
    Tong, Yanqi
    Zhang, Qian
    SENSORS, 2022, 22 (09)
  • [27] Bidirectional feature enhancement transformer for unsupervised domain adaptation
    Hao, Zhiwei
    Wang, Shengsheng
    Long, Sifan
    Li, Yiyang
    Chai, Hao
    VISUAL COMPUTER, 2024, 40 (09): : 6261 - 6277
  • [28] TVT: Transferable Vision Transformer for Unsupervised Domain Adaptation
    Yang, Jinyu
    Liu, Jingjing
    Xu, Ning
    Huang, Junzhou
    2023 IEEE/CVF WINTER CONFERENCE ON APPLICATIONS OF COMPUTER VISION (WACV), 2023, : 520 - 530
  • [29] Structure enhanced prototypical alignment for unsupervised cross-domain node classification
    Liu, Meihan
    Zhang, Zhen
    Ma, Ning
    Gu, Ming
    Wang, Haishuai
    Zhou, Sheng
    Bu, Jiajun
    NEURAL NETWORKS, 2024, 177
  • [30] Unsupervised Domain Adaptation with Unified Joint Distribution Alignment
    Du, Yuntao
    Tan, Zhiwen
    Zhang, Xiaowen
    Yao, Yirong
    Yu, Hualei
    Wang, Chongjun
    DATABASE SYSTEMS FOR ADVANCED APPLICATIONS (DASFAA 2021), PT II, 2021, 12682 : 449 - 464