Enhancing Oxygen Evolution Electrocatalysis in Heazlewoodite: Unveiling the Critical Role of Entropy Levels and Surface Reconstruction

被引:3
作者
Liu, Hangning [1 ,2 ]
Liu, Xinghang [1 ]
Sun, Anbang [3 ]
Xuan, Cuijuan [1 ]
Ma, Yingjun [1 ]
Zhang, Zixuan [2 ]
Li, Hui [4 ]
Wu, Zexing [5 ]
Ma, Tianyi [4 ]
Wang, Jie [1 ]
机构
[1] Qingdao Agr Univ, Coll Chem & Pharmaceut Sci, Qingdao Engn Res Ctr Agr Recycling Econ Mat, Qingdao 266109, Peoples R China
[2] Politecn di Milano, Sch Ind & Informat Engn, Milano 20133, Peoples R China
[3] Shandong Inst Nonmet Mat, Jinan 250031, Peoples R China
[4] RMIT Univ, Ctr Atomat & Nanomfg CAN, Melbourne, Vic 3000, Australia
[5] Qingdao Univ Sci & Technol, Coll Chem & Mol Engn, State Key Lab Base Ecochem Engn, 53 Zhengzhou Rd, Qingdao 266042, Peoples R China
基金
中国博士后科学基金; 澳大利亚研究理事会; 中国国家自然科学基金;
关键词
electrocatalysis; entropy engineering; nickel sulfide; oxygen evolution reaction; surface reconstruction; OXIDES;
D O I
10.1002/adma.202501186
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Entropy engineering has proven effective in enhancing catalyst electrochemical properties, particularly for the oxygen evolution reaction (OER). Challenges persist, however, in modulating entropy and understanding the dynamic reconfiguration of high-entropy sulfides during OER. In this study, an innovative in situ corrosion method is introduced to convert low-valent nickel on a nickel foam substrate into high-entropy heazlewoodite (HES/NF), significantly boosting OER performance. By synthesizing a series of low-, medium-, and high-entropy heazlewoodites, the intrinsic factors influence catalyst surface evolution and electrocatalytic activity is systematically explored. Employing a combination of in situ and ex situ characterization techniques, it is observed that HES/NF dynamically transforms into a stable hydroxide oxide (MOOH)-sulfide composite under OER conditions. This transition, coupled with lattice distortion, optimizes the electrostatic potential distribution, ensuring superior catalytic activity and preventing surface sulfide deactivation through the formation of stable HES-MOOH species. This synergy enables HES/NF to achieve remarkably low overpotentials: 172.0 mV at 100.0 mA cm-2 and 229.0 mV at an extreme current density of 300.0 mA cm-2. When paired with a Pt/C cathode, HES/NF exhibits rapid kinetics, outstanding stability, and exceptional water-splitting performance. The scalable, cost-effective approach paves the way for advanced electrocatalyst design, promising breakthroughs in energy storage and conversion technologies.
引用
收藏
页数:12
相关论文
共 57 条
[1]   Synergistic effects of mixing and strain in high entropy spinel oxides for oxygen evolution reaction [J].
Baek, Jihyun ;
Hossain, Md Delowar ;
Mukherjee, Pinaki ;
Lee, Junghwa ;
Winther, Kirsten T. ;
Leem, Juyoung ;
Jiang, Yue ;
Chueh, William C. ;
Bajdich, Michal ;
Zheng, Xiaolin .
NATURE COMMUNICATIONS, 2023, 14 (01)
[2]   Recent progress in transition-metal-oxide-based electrocatalysts for the oxygen evolution reaction in natural seawater splitting: A critical review [J].
Chen, Meng ;
Kitiphatpiboon, Nutthaphak ;
Feng, Changrui ;
Abudula, Abuliti ;
Ma, Yufei ;
Guan, Guoqing .
ESCIENCE, 2023, 3 (02)
[3]   In Situ Raman Study of Surface Reconstruction of FeOOH/Ni3S2 Oxygen Evolution Reaction Electrocatalysts [J].
Chen, Mengxin ;
Zhang, Yuanyuan ;
Chen, Ji ;
Wang, Ran ;
Zhang, Bin ;
Song, Bo ;
Xu, Ping .
SMALL, 2024, 20 (23)
[4]  
Chen ZJ, 2024, EcoEnergy, V2, P114, DOI [10.1002/ece2.29, 10.1002/ece2.29, DOI 10.1002/ECE2.29]
[5]   Enhancing Oxygen Evolution Reaction via a Surface Reconstruction-Induced Lattice Oxygen Mechanism [J].
Choi, Subin ;
Kim, Se-Jun ;
Han, Sunghoon ;
Wang, Jian ;
Kim, Juwon ;
Koo, Bonho ;
Ryabin, Alexander A. ;
Kunze, Sebastian ;
Hyun, Hyejeong ;
Han, Jeongwoo ;
Haw, Shu-Chih ;
Chae, Keun Hwa ;
Choi, Chang Hyuck ;
Kim, Hyungjun ;
Lim, Jongwoo .
ACS CATALYSIS, 2024, 14 (20) :15096-15107
[6]   A self-circulating pathway for the oxygen evolution reaction [J].
Deng, Bohan ;
Yu, Guangqiang ;
Zhao, Wei ;
Long, Yuanzheng ;
Yang, Cheng ;
Du, Peng ;
He, Xian ;
Zhang, Zhuting ;
Huang, Kai ;
Li, Xibo ;
Wu, Hui .
ENERGY & ENVIRONMENTAL SCIENCE, 2023, 16 (11) :5210-5219
[7]   Earth-Abundant Metal-Based Electrocatalysts Promoted Anodic Reaction in Hybrid Water Electrolysis for Efficient Hydrogen Production: Recent Progress and Perspectives [J].
Deng, Chen ;
Toe, Cui Ying ;
Li, Xuan ;
Tan, Jingjin ;
Yang, Hengpan ;
Hu, Qi ;
He, Chuanxin .
ADVANCED ENERGY MATERIALS, 2022, 12 (25)
[8]   Layered Quasi-Nevskite Metastable-Phase Cobalt Oxide Accelerates Alkaline Oxygen Evolution Reaction Kinetics [J].
Fan, Zhenglong ;
Sun, Qintao ;
Yang, Hao ;
Zhu, Wenxiang ;
Liao, Fan ;
Shao, Qi ;
Zhang, Tianyang ;
Huang, Hui ;
Cheng, Tao ;
Liu, Yang ;
Shao, Mingwang ;
Shao, Minhua ;
Kang, Zhenhui .
ACS NANO, 2024, 18 (06) :5029-5039
[9]   Defect and interface engineering of hexagonal Fe2O3/ZnCo2O4 n-n heterojunction for efficient oxygen evolution reaction [J].
Fu, Shaqi ;
Ma, Yiran ;
Yang, Xuechun ;
Yao, Xuan ;
Jiao, Zheng ;
Cheng, Lingli ;
Zhao, Pandeng .
APPLIED CATALYSIS B-ENVIRONMENT AND ENERGY, 2023, 333
[10]   Accelerating the generation of NiOOH by in-situ surface phosphating nickel sulfide for promoting the proton-coupled electron transfer kinetics of urea electrolysis [J].
Guo, Xin ;
Qiu, Longyu ;
Li, Menggang ;
Tian, Fenyang ;
Ren, Xue ;
Jie, Sheng ;
Geng, Shuo ;
Han, Guanghui ;
Huang, Yarong ;
Song, Ying ;
Yang, Weiwei ;
Yu, Yongsheng .
CHEMICAL ENGINEERING JOURNAL, 2024, 483