Probabilistic framework for strain-based fatigue life prediction and uncertainty quantification using interpretable machine learning

被引:2
作者
Deng, Xi [1 ]
Zhu, Shun-Peng [1 ]
Wang, Lanyi [1 ]
Luo, Changqi [1 ]
Fu, Sicheng [2 ]
Wang, Qingyuan [3 ]
机构
[1] Univ Elect Sci & Technol China, Sch Mech & Elect Engn, Chengdu 611731, Peoples R China
[2] Syracuse Univ, Coll Elect Engn & Comp Sci, Syracuse, NY 13244 USA
[3] Sichuan Univ, Coll Architecture & Environm, Failure Mech & Engn Disaster Prevent & Mitigat Key, Chengdu 610065, Peoples R China
基金
中国国家自然科学基金;
关键词
Strain-based fatigue life prediction; Uncertainty quantification; Interpretable machine learning; Symbolic regression; Material variability; BEHAVIOR; STEELS; TEMPERATURE;
D O I
10.1016/j.ijfatigue.2024.108647
中图分类号
TH [机械、仪表工业];
学科分类号
0802 ;
摘要
Establishing a unified fatigue life prediction model and quantifying the uncertainty in the mechanical behavior of materials are critical to ensure the structural integrity and equipment performance. For the commonly-used strain-based fatigue methods, existing estimation methods exhibit inevitable deviations, while data-driven methods have shown poor extrapolation ability and interpretability. Therefore, this paper aims to develop a probabilistic framework for strain-based fatigue life prediction and uncertainty quantification (UQ) to provide an indication for fatigue design/assessment using interpretable machine learning (ML) techniques. Based on Shapley additive explanations (SHAP) and symbolic regression (SR), interpretable prediction models with concise expressions and outstanding prediction performance are established and optimized according to the priori physical knowledge. Moreover, accounting for the material variability, the probabilistic assessment with UQ excellently validates the prediction model, and quantifies the variability of epsilon-N curves. The proposed framework provides a valuable reference and shows promising prospects in fatigue design for engineering components.
引用
收藏
页数:17
相关论文
共 71 条
  • [11] Estimation and validation for fatigue properties of steels by symbolic regression
    Cao, Weiwen
    Sun, Xingyue
    Chen, Xu
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2024, 186
  • [12] XGBoost: A Scalable Tree Boosting System
    Chen, Tianqi
    Guestrin, Carlos
    [J]. KDD'16: PROCEEDINGS OF THE 22ND ACM SIGKDD INTERNATIONAL CONFERENCE ON KNOWLEDGE DISCOVERY AND DATA MINING, 2016, : 785 - 794
  • [13] Cranmer M, 2023, Arxiv, DOI [arXiv:2305.01582, DOI 10.48550/ARXIV.2305.01582]
  • [14] Cranmer M, 2020, Arxiv, DOI arXiv:2006.11287
  • [15] A state-of-the-art review on fatigue life prediction methods for metal structures
    Cui, WC
    [J]. JOURNAL OF MARINE SCIENCE AND TECHNOLOGY, 2002, 7 (01) : 43 - 56
  • [16] Application of artificial neural network for predicting strain-life fatigue properties of steels on the basis of tensile tests
    Genel, K
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2004, 26 (10) : 1027 - 1035
  • [17] Uncertainty quantification in fatigue crack-growth predictions
    Giannella, V
    [J]. INTERNATIONAL JOURNAL OF FRACTURE, 2022, 235 (02) : 179 - 195
  • [18] Low cycle fatigue life prediction - A new model
    Goswami, T
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 1997, 19 (02) : 109 - 115
  • [19] A novel fatigue and creep-fatigue life prediction model by combining data-driven approach with domain knowledge
    Gu, Hang-Hang
    Zhang, Xian-Cheng
    Zhang, Kun
    Li, Kai-Shang
    Tu, Shan-Tung
    Wang, Run-Zi
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2024, 186
  • [20] Interpretable machine learning for microstructure-dependent models of fatigue indicator parameters
    Hansen, Cooper K.
    Whelan, Gary F.
    Hochhalter, Jacob D.
    [J]. INTERNATIONAL JOURNAL OF FATIGUE, 2024, 178