Transport noise restores uniqueness and prevents blow-up in geometric transport equations

被引:0
作者
de Leon, Aythami Bethencourt [1 ,4 ]
Takao, So [2 ,3 ,4 ]
机构
[1] Univ La Laguna, Dept Math Stat & Operat Res, San Cristobal De La Lagun 38206, Spain
[2] CALTECH, Dept Comp & Math Sci, Pasadena, CA 91125 USA
[3] UCL, UCL Ctr Artificial Intelligence, London WC1V 6BH, England
[4] Imperial Coll London, Dept Math, London SW7 2AZ, England
来源
STOCHASTICS AND PARTIAL DIFFERENTIAL EQUATIONS-ANALYSIS AND COMPUTATIONS | 2024年
基金
英国工程与自然科学研究理事会;
关键词
Well-posedness by noise; Transport noise; Stochastic Lie transport equations; Blow-up prevention; Stochastic flows; Geometric mechanics; STOCHASTIC CONTINUITY EQUATIONS; DIFFERENTIAL FORMS; REGULARIZATION; ITO;
D O I
10.1007/s40072-024-00339-8
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this work, we demonstrate well-posedness and regularisation by noise results for a class of geometric transport equations that contains, among others, the linear transport and continuity equations. This class is known as linear advection of k-forms. In particular, we prove global existence and uniqueness of Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions to the stochastic equation, driven by a spatially alpha\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$\alpha $$\end{document}-H & ouml;lder drift b, uniformly bounded in time, with an integrability condition on the distributional derivative of b, and sufficiently regular diffusion vector fields. Furthermore, we prove that all our solutions are continuous if the initial datum is continuous. Finally, we show that our class of equations without noise admits infinitely many Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions and is hence ill-posed. Moreover, the deterministic solutions can be discontinuous in both time and space independently of the regularity of the initial datum. We also demonstrate that for certain initial data of class C0 infinity,\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$C<^>\infty _{0},$$\end{document} the deterministic Lp\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>p$$\end{document}-solutions blow up instantaneously in the space Lloc infinity\documentclass[12pt]{minimal} \usepackage{amsmath} \usepackage{wasysym} \usepackage{amsfonts} \usepackage{amssymb} \usepackage{amsbsy} \usepackage{mathrsfs} \usepackage{upgreek} \setlength{\oddsidemargin}{-69pt} \begin{document}$$L<^>{\infty }_{loc}$$\end{document}. In order to establish our results, we employ characteristics-based techniques that exploit the geometric structure of our equations.
引用
收藏
页码:631 / 725
页数:95
相关论文
共 40 条
  • [1] A Local-in-Time Theory for Singular SDEs with Applications to Fluid Models with Transport Noise
    Alonso-Oran, Diego
    Rohde, Christian
    Tang, Hao
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2021, 31 (06)
  • [2] Modelling the Climate and Weather of a 2D Lagrangian-Averaged Euler-Boussinesq Equation with Transport Noise
    Alonso-Oran, Diego
    de Leon, Aythami Bethencourt
    Holm, Darryl D.
    Takao, So
    [J]. JOURNAL OF STATISTICAL PHYSICS, 2020, 179 (5-6) : 1267 - 1303
  • [3] On the Well-Posedness of Stochastic Boussinesq Equations with Transport Noise
    Alonso-Oran, Diego
    Bethencourt de Leon, Aythami
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2020, 30 (01) : 175 - 224
  • [4] The Burgers' equation with stochastic transport: shock formation, local and global existence of smooth solutions
    Alonso-Oran, Diego
    de Leon, Aythami Bethencourt
    Takao, So
    [J]. NODEA-NONLINEAR DIFFERENTIAL EQUATIONS AND APPLICATIONS, 2019, 26 (06):
  • [5] Ambrosio L., 2008, Calc. Var. Nonlinear Par. Diff. Equ, DOI [10.1007/978-3-540-75914-01, DOI 10.1007/978-3-540-75914-01]
  • [6] Renormalized Solutions for Stochastic Transport Equations and the Regularization by Bilinear Multiplicative Noise
    Attanasio, S.
    Flandoli, F.
    [J]. COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2011, 36 (08) : 1455 - 1474
  • [7] Bauer M., 2012, J. Geom. Mech, V4
  • [8] Stochastic ODEs and stochastic linear PDEs with critical drift: regularity, duality and uniqueness
    Beck, Lisa
    Flandoli, Franco
    Gubinelli, Massimiliano
    Maurelli, Mario
    [J]. ELECTRONIC JOURNAL OF PROBABILITY, 2019, 24
  • [9] A GENERALIZED FORMULA OF ITO AND SOME OTHER PROPERTIES OF STOCHASTIC FLOWS
    BISMUT, JM
    [J]. ZEITSCHRIFT FUR WAHRSCHEINLICHKEITSTHEORIE UND VERWANDTE GEBIETE, 1981, 55 (03): : 331 - 350
  • [10] Solution Properties of a 3D Stochastic Euler Fluid Equation
    Crisan, Dan
    Flandoli, Franco
    Holm, Darryl D.
    [J]. JOURNAL OF NONLINEAR SCIENCE, 2019, 29 (03) : 813 - 870