How immunity shapes the long-term dynamics of influenza H3N2

被引:0
作者
Eales, Oliver [1 ,2 ]
Shearer, Freya M. [1 ,3 ]
McCaw, James M. [1 ,2 ]
机构
[1] Univ Melbourne, Ctr Epidemiol & Biostat, Melbourne Sch Populat & Global Hlth, Infect Dis Dynam Unit, Melbourne, Australia
[2] Univ Melbourne, Sch Math & Stat, Melbourne, Australia
[3] Kids Res Inst, Infect Dis Ecol & Modelling, Perth, Australia
基金
英国医学研究理事会; 澳大利亚研究理事会;
关键词
GLOBAL CIRCULATION; A H3N2; VACCINE; TRANSMISSION; EVOLUTION; VIRUSES;
D O I
10.1371/journal.pcbi.1012893
中图分类号
Q5 [生物化学];
学科分类号
071010 ; 081704 ;
摘要
Since its emergence in 1968, influenza A H3N2 has caused yearly epidemics in temperate regions. While infection confers immunity against antigenically similar strains, new antigenically distinct strains that evade existing immunity regularly emerge ('antigenic drift'). Immunity at the individual level is complex, depending on an individual's lifetime infection history. An individual's first infection with influenza typically elicits the greatest response with subsequent infections eliciting progressively reduced responses ('antigenic seniority'). The combined effect of individual-level immune responses and antigenic drift on the epidemiological dynamics of influenza are not well understood. Here we develop an integrated modelling framework of influenza transmission, immunity, and antigenic drift to show how individual-level exposure, and the build-up of population level immunity, shape the long-term epidemiological dynamics of H3N2. Including antigenic seniority in the model, we observe that following an initial decline after the pandemic year, the average annual attack rate increases over the next 80 years, before reaching an equilibrium, with greater increases in older age-groups. Our analyses suggest that the average attack rate of H3N2 is still in a growth phase. Further increases, particularly in the elderly, may be expected in coming decades, driving an increase in healthcare demand due to H3N2 infections.
引用
收藏
页数:24
相关论文
共 58 条
[1]   Challenges in estimating influenza vaccine effectiveness [J].
Ainslie, Kylie E. C. ;
Haber, Michael ;
Orenstein, Walt A. .
EXPERT REVIEW OF VACCINES, 2019, 18 (06) :615-628
[2]  
[Anonymous], 2023, Archived: Estimated Influenza Illnesses, Medical visits, Hospitalizations, and Deaths in the United States-2019-2020 Influenza Season
[3]   Global circulation patterns of seasonal influenza viruses vary with antigenic drift [J].
Bedford, Trevor ;
Riley, Steven ;
Barr, Ian G. ;
Broor, Shobha ;
Chadha, Mandeep ;
Cox, Nancy J. ;
Daniels, Rodney S. ;
Gunasekaran, C. Palani ;
Hurt, Aeron C. ;
Kelso, Anne ;
Klimov, Alexander ;
Lewis, Nicola S. ;
Li, Xiyan ;
McCauley, John W. ;
Odagiri, Takato ;
Potdar, Varsha ;
Rambaut, Andrew ;
Shu, Yuelong ;
Skepner, Eugene ;
Smith, Derek J. ;
Suchard, Marc A. ;
Tashiro, Masato ;
Wang, Dayan ;
Xu, Xiyan ;
Lemey, Philippe ;
Russell, Colin A. .
NATURE, 2015, 523 (7559) :217-U206
[4]   Integrating influenza antigenic dynamics with molecular evolution [J].
Bedford, Trevor ;
Suchard, Marc A. ;
Lemey, Philippe ;
Dudas, Gytis ;
Gregory, Victoria ;
Hay, Alan J. ;
McCauley, John W. ;
Russell, Colin A. ;
Smith, Derek J. ;
Rambaut, Andrew .
ELIFE, 2014, 3
[5]   Canalization of the evolutionary trajectory of the human influenza virus [J].
Bedford, Trevor ;
Rambaut, Andrew ;
Pascual, Mercedes .
BMC BIOLOGY, 2012, 10
[6]   Influenza Infection Rates, Measurement Errors and the Interpretation of Paired Serology [J].
Cauchemez, Simon ;
Horby, Peter ;
Fox, Annette ;
Le Quynh Mai ;
Le Thi Thanh ;
Pham Quang Thai ;
Le Nguyen Minh Hoa ;
Nguyen Tran Hien ;
Ferguson, Neil M. .
PLOS PATHOGENS, 2012, 8 (12)
[7]   Investigating Viral Interference Between Influenza A Virus and Human Respiratory Syncytial Virus in a Ferret Model of Infection [J].
Chan, Kok Fei ;
Carolan, Louise A. ;
Korenkov, Daniil ;
Druce, Julian ;
McCaw, James ;
Reading, Patrick C. ;
Barr, Ian G. ;
Laurie, Karen L. .
JOURNAL OF INFECTIOUS DISEASES, 2018, 218 (03) :406-417
[8]   Relationship between haemagglutination-inhibiting antibody titres and clinical protection against influenza: development and application of a bayesian random-effects model [J].
Coudeville, Laurent ;
Bailleux, Fabrice ;
Riche, Benjamin ;
Megas, Francoise ;
Andre, Philippe ;
Ecochard, Rene .
BMC MEDICAL RESEARCH METHODOLOGY, 2010, 10
[9]   Age-Related Differences in Hospitalization Rates, Clinical Presentation, and Outcomes Among Older Adults Hospitalized With Influenza-US Influenza Hospitalization Surveillance Network (FluSurv-NET) [J].
Czaja, Christopher A. ;
Miller, Lisa ;
Alden, Nisha ;
Wald, Heidi L. ;
Cummings, Charisse Nitura ;
Rolfes, Melissa A. ;
Anderson, Evan J. ;
Bennett, Nancy M. ;
Billing, Laurie M. ;
Chai, Shua J. ;
Eckel, Seth ;
Mansmann, Robert ;
McMahon, Melissa ;
Monroe, Maya L. ;
Muse, Alison ;
Risk, Ilene ;
Schaffner, William ;
Thomas, Ann R. ;
Yousey-Hindes, Kimberly ;
Garg, Shikha ;
Herlihy, Rachel K. .
OPEN FORUM INFECTIOUS DISEASES, 2019, 6 (07)
[10]   Age-seroprevalence curves for the multi-strain structure of influenza A virus [J].
Dao Nguyen Vinh ;
Nguyen Thi Duy Nhat ;
de Bruin, Erwin ;
Nguyen Ha Thao Vy ;
Tran Thi Nhu Thao ;
Huynh Thi Phuong ;
Pham Hong Anh ;
Todd, Stacy ;
Tran Minh Quan ;
Nguyen Thi Le Thanh ;
Nguyen Thi Nam Lien ;
Nguyen Thi Hong Ha ;
Tran Thi Kim Hong ;
Pham Quang Thai ;
Choisy, Marc ;
Tran Dang Nguyen ;
Simmons, Cameron P. ;
Thwaites, Guy E. ;
Clapham, Hannah E. ;
Nguyen Van Vinh Chau ;
Koopmans, Marion ;
Boni, Maciej F. .
NATURE COMMUNICATIONS, 2021, 12 (01)