Integrability and multiple-rogue and multi-soliton wave solutions of the (3+1)-dimensional Hirota-Satsuma-Ito equation

被引:14
作者
Chu, Jingyi [1 ]
Liu, Yaqing [1 ]
Ma, Wen-Xiu [2 ,3 ,4 ,5 ]
机构
[1] Beijing Informat Sci & Technol Univ, Sch Appl Sci, Beijing 100192, Peoples R China
[2] Zhejiang Normal Univ, Dept Math, Jinhua 321004, Peoples R China
[3] King Abdulaziz Univ, Dept Math, Jeddah 21589, Saudi Arabia
[4] Univ S Florida, Dept Math & Stat, Tampa, FL 33620 USA
[5] North West Univ, Dept Math Sci, Mat Sci Innovat & Modelling, Makeng Campus, ZA-2735 Mmabatho, South Africa
来源
MODERN PHYSICS LETTERS B | 2025年 / 39卷 / 21期
基金
北京市自然科学基金;
关键词
(3+1)-dimensional Hirota-Satsuma-Ito equation; Hirota N-soliton condition; Hirota bilinear method; multi-rogue wave solutions; STEEPEST DESCENT METHOD; N-SOLITON SOLUTION; BILINEAR EQUATIONS; 3-SOLITON CONDITION; SEARCH; RIEMANN; LUMP; MODEL;
D O I
10.1142/S0217984925500605
中图分类号
O59 [应用物理学];
学科分类号
摘要
This paper constructs a new (3+1)-dimensional Hirota-Satsuma-Ito equation and employs the Hirota N-soliton condition to determine the conditions for the existence of N-soliton solutions. Under these conditions, the Hirota bilinear method is utilized to derive N-soliton solutions of the equation. Additionally, breather solutions of the equation are obtained through constraints on complex conjugate parameters, while lump solutions are derived using the long-wave limit method. Building upon these results, interaction solutions are also explored. Furthermore, through the multiple-rogue wave method, multi-rogue wave solutions of the (3+1)-dimensional Hirota-Satsuma-Ito equation are investigated. A comparison between lump solutions obtained via the Hirota bilinear method and the multi-rogue wave solutions from multiple-rogue wave method reveals significant discrepancies.
引用
收藏
页数:27
相关论文
共 50 条
[1]   Nonlinear waves and the Inverse Scattering Transform [J].
Ablowitz, Mark J. .
OPTIK, 2023, 278
[2]   Inverse scattering transform for the integrable nonlocal nonlinear Schrodinger equation [J].
Ablowitz, Mark J. ;
Musslimani, Ziad H. .
NONLINEARITY, 2016, 29 (03) :915-946
[3]  
Ablowitz MJ., 1991, Solitons, Nonlinear Evolution Equation and Inverse Scattering, DOI 10.1017/CBO9780511623998
[4]   The mixed solutions of the (2+1)-dimensional Hirota-Satsuma-Ito equation and the analysis of nonlinear transformed waves [J].
An, Yong-Ning ;
Guo, Rui .
NONLINEAR DYNAMICS, 2023, 111 (19) :18291-18311
[5]   Multiple rational rogue waves for higher dimensional nonlinear evolution equations via symbolic computation approach [J].
Arshed, Saima ;
Raza, Nauman ;
Butt, Asma Rashid ;
Javid, Ahmad ;
Gomez-Aguilar, J. F. .
JOURNAL OF OCEAN ENGINEERING AND SCIENCE, 2023, 8 (01) :33-41
[6]   THE RIEMANN - HILBERT PROBLEM [J].
BOLIBRUKH, AA .
RUSSIAN MATHEMATICAL SURVEYS, 1990, 45 (02) :1-58
[7]   Soliton solutions and their degenerations in the (2+1)-dimensional Hirota-Satsuma-Ito equations with time-dependent linear phase speed [J].
Chen, Xin ;
Liu, Yaqing ;
Zhuang, Jianhong .
NONLINEAR DYNAMICS, 2023, 111 (11) :10367-10380
[8]   Integrability, lump solutions, breather solutions and hybrid solutions for the (2+1)-dimensional variable coefficient Korteweg-de Vries equation [J].
Chu, Jingyi ;
Chen, Xin ;
Liu, Yaqing .
NONLINEAR DYNAMICS, 2024, 112 (01) :619-634
[9]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS [J].
DEIFT, P ;
ZHOU, X .
BULLETIN OF THE AMERICAN MATHEMATICAL SOCIETY, 1992, 26 (01) :119-123
[10]   A STEEPEST DESCENT METHOD FOR OSCILLATORY RIEMANN-HILBERT PROBLEMS - ASYMPTOTICS FOR THE MKDV EQUATION [J].
DEIFT, P ;
ZHOU, X .
ANNALS OF MATHEMATICS, 1993, 137 (02) :295-368