AI education for clinicians

被引:1
作者
Schubert, Tim [1 ,2 ,8 ]
Oosterlinck, Tim [1 ,3 ]
Stevens, Robert D. [4 ,5 ]
Maxwell, Patrick H. [6 ]
van der Schaar, Mihaela [1 ,7 ]
机构
[1] Univ Cambridge, Dept Appl Math & Theoret Phys, Cambridge, England
[2] Heidelberg Univ, Med Fac, Heidelberg, Germany
[3] Katholieke Univ Leuven, Fac Med, Leuven, Belgium
[4] Johns Hopkins Univ, Dept Anesthesiol & Crit Care Med, Dept Biomed Engn, Baltimore, MD USA
[5] Johns Hopkins Univ, Inst Computat Med, Baltimore, MD USA
[6] Univ Cambridge, Sch Clin Med, Cambridge, England
[7] Cambridge Ctr AI Med, Cambridge, England
[8] Heidelberg Univ, Inst Human Genet, Heidelberg, Germany
关键词
Arti fi cial intelligence; Machine learning; Medical education; Clinicians; Framework; ARTIFICIAL-INTELLIGENCE;
D O I
10.1016/j.eclinm.2024.102968
中图分类号
R5 [内科学];
学科分类号
1002 ; 100201 ;
摘要
Rapid advancements in medical AI necessitate targeted educational initiatives for clinicians to ensure AI tools are safe and used effectively to improve patient outcomes. To support decision-making among stakeholders in medical education, we propose three tiers of medical AI expertise and outline the challenges for medical education at different educational stages. Additionally, we offer recommendations and examples, encouraging stakeholders to adapt and shape curricula for their specific healthcare setting using this framework.
引用
收藏
页数:7
相关论文
共 38 条
  • [21] What do medical students actually need to know about artificial intelligence?
    McCoy, Liam G.
    Nagaraj, Sujay
    Morgado, Felipe
    Harish, Vinyas
    Das, Sunit
    Celi, Leo Anthony
    [J]. NPJ DIGITAL MEDICINE, 2020, 3 (01)
  • [22] Foundation models for generalist medical artificial intelligence
    Moor, Michael
    Banerjee, Oishi
    Abad, Zahra Shakeri Hossein
    Krumholz, Harlan M.
    Leskovec, Jure
    Topol, Eric J.
    Rajpurkar, Pranav
    [J]. NATURE, 2023, 616 (7956) : 259 - 265
  • [23] The ethics of AI in health care: A mapping review
    Morley, Jessica
    Machado, Caio C., V
    Burr, Christopher
    Cowls, Josh
    Joshi, Indra
    Taddeo, Mariarosaria
    Floridi, Luciano
    [J]. SOCIAL SCIENCE & MEDICINE, 2020, 260
  • [24] Approval of artificial intelligence and machine learning-based medical devices in the USA and Europe (2015-20): a comparative analysis
    Muehlematter, Urs J.
    Daniore, Paola
    Vokinger, Kerstin N.
    [J]. LANCET DIGITAL HEALTH, 2021, 3 (03): : E195 - E203
  • [25] Artificial intelligence education: An evidence-based medicine approach for consumers, translators, and developers
    Ng, Faye Yu Ci
    Thirunavukarasu, Arun James
    Cheng, Haoran
    Tan, Ting Fang
    Gutierrez, Laura
    Lan, Yanyan
    Ong, Jasmine Chiat Ling
    Chong, Yap Seng
    Ngiam, Kee Yuan
    Ho, Dean
    Wong, Tien Yin
    Kwek, Kenneth
    Doshi-Velez, Finale
    Lucey, Catherine
    Coffman, Thomas
    Ting, Daniel Shu Wei
    [J]. CELL REPORTS MEDICINE, 2023, 4 (10)
  • [26] Passey N., 2024, Why AI has a greater healthcare impact in emerging markets
  • [27] pennmedicine, Informatics Fellowship
  • [28] Pupic N, 2023, PLOS DIGIT HEALTH, V2, DOI 10.1371/journal.pdig.0000255
  • [29] Evaluation of a Biomedical Informatics course for medical students: a Pre-posttest study at UNAM Faculty of Medicine in Mexico
    Sanchez-Mendiola, Melchor
    Martinez-Franco, Adrian I.
    Lobato-Valverde, Marlette
    Fernandez-Saldivar, Fabian
    Vives-Varela, Tania
    Martinez-Gonzalez, Adrian
    [J]. BMC MEDICAL EDUCATION, 2015, 15
  • [30] Artificial Intelligence Education and Tools for Medical and Health Informatics Students: Systematic Review
    Sapci, A. Hasan
    Sapci, H. Aylin
    [J]. JMIR MEDICAL EDUCATION, 2020, 6 (01):