Revealing the Critical Role of Electron-Withdrawing Cores in Bulk Passivation of Diammonium Ligands Toward High-Performance Perovskite Solar Cells

被引:0
作者
Hu, Jiayu [1 ]
Qiao, Ying [2 ]
Zeng, Jie [3 ]
Li, Hongbing [4 ]
Li, Huayang [1 ]
Peng, Wenbo [3 ]
Geng, Shaoyu [1 ]
Li, Ya [1 ]
Yang, Jie [1 ]
Jin, Yeming [1 ]
Cao, Ruirui [1 ]
Li, Fuqiang [5 ]
Park, Sung Heum [5 ]
Shen, Nan [1 ]
Guo, Fei [4 ]
Xu, Baomin [3 ]
Chen, Shi [1 ]
机构
[1] Henan Univ, Sch Future Technol, Henan Key Lab Quantum Mat & Quantum Energy, Zhengzhou 450046, Peoples R China
[2] Southern Univ Sci & Technol, Dept Chem, Shenzhen 518055, Peoples R China
[3] Southern Univ Sci & Technol, Dept Mat Sci & Engn, Shenzhen 518055, Peoples R China
[4] Jinan Univ, Inst New Energy Technol, Coll Phys & Optoelect Engn, Guangzhou 510632, Peoples R China
[5] Pukyong Natl Univ, Dept Phys, Busan 48513, South Korea
基金
中国国家自然科学基金;
关键词
diammonium ligands passivation; electron-withdrawing cores; high efficiency and stability; perovskite solar cells; EFFICIENT; IODIDE;
D O I
10.1002/adfm.202424259
中图分类号
O6 [化学];
学科分类号
0703 ;
摘要
Diammonium derivatives with electron-withdrawing cores of cyclohexyl or phenyl have demonstrated enormous potential in achieving high-performance perovskite solar cells. Nevertheless, the critical role of these electron-withdrawing cores of the diammonium passivation on device performance is yet to be elucidated. Herein, two kinds of diammonium ligands of 1, 4-cyclohexyldimethylammonium diiodide (CyDMADI) and 1, 4-phenyldimethylammonium diiodide (PhDMADI) are introduced into the perovskite precursor for bulk passivation. The PhDMADI system exhibits a stronger electron-withdrawing unit of phenyl in comparison to the CyDMADI system with a cyclohexyl core, thus resulting in enhanced electrostatic interaction between uncoordinated Pb2+ and phenyl groups and stronger hydrogen bonds between PhDMADI and the I & horbar;Pb skeleton. Such strengthened interactions between PhDMADI and perovskite effectively inhibit the generation of trap states and therefore significantly decrease non-radiative recombination. The PhDMADI-passivated film demonstrates mitigated microstrain and decreased grain boundary grooves (GBGs) compared with the CyDMADI-based counterpart. Simultaneously, the PhDMADI treatment can efficiently slow down the hot-carriers cooling dynamics process, benefiting the transfer of hot-carriers. Consequently, the PhDMADI-passivated device achieves an impressive efficiency of 26.04%, along with excellent operating stability which retains 90% of its initial efficiency after 1100 h tracking at the maximum power point under continuous one sun illumination.
引用
收藏
页数:11
相关论文
共 59 条
[1]  
[Anonymous], BEST RES CELL EFFICI
[2]   Structurally Flexible 2D Spacer for Suppressing the Electron-Phonon Coupling Induced Non-Radiative Decay in Perovskite Solar Cells [J].
Cao, Ruikun ;
Sun, Kexuan ;
Liu, Chang ;
Mao, Yuhong ;
Guo, Wei ;
Ping, Ouyang ;
Meng, Yuanyuan ;
Tian, Ruijia ;
Xie, Lisha ;
Lu, Xujie ;
Ge, Ziyi .
NANO-MICRO LETTERS, 2024, 16 (01)
[3]   π-Interactions suppression of buried interface defects for efficient and stable inverted perovskite solar cells [J].
Chen, Hui ;
Yang, Jiabao ;
Cao, Qi ;
Wang, Tong ;
Pu, Xingyu ;
He, Xilai ;
Chen, Xingyuan ;
Li, Xuanhua .
NANO ENERGY, 2023, 117
[4]   Crystallization control via ligand-perovskite coordination for high-performance flexible perovskite solar cells [J].
Chen, Xin ;
Cai, Weilun ;
Niu, Tianqi ;
Wang, Hui ;
Liu, Chou ;
Zhang, Zheng ;
Du, Yachao ;
Wang, Shuang ;
Cao, Yang ;
Liu, Pengchi ;
Huang, Wenliang ;
Ma, Chuang ;
Yang, Ben ;
Liu, Shengzhong ;
Zhao, Kui .
ENERGY & ENVIRONMENTAL SCIENCE, 2024, 17 (17) :6256-6267
[5]   Dopant-additive synergism enhances perovskite solar modules [J].
Ding, Bin ;
Ding, Yong ;
Peng, Jun ;
Romano-deGea, Jan ;
Frederiksen, Lindsey E. K. ;
Kanda, Hiroyuki ;
Syzgantseva, Olga A. ;
Syzgantseva, Maria A. ;
Audinot, Jean-Nicolas ;
Bour, Jerome ;
Zhang, Song ;
Wirtz, Tom ;
Fei, Zhaofu ;
Doerflinger, Patrick ;
Shibayama, Naoyuki ;
Niu, Yunjuan ;
Hu, Sixia ;
Zhang, Shunlin ;
Tirani, Farzaneh Fadaei ;
Liu, Yan ;
Yang, Guan-Jun ;
Brooks, Keith ;
Hu, Linhua ;
Kinge, Sachin ;
Dyakonov, Vladimir ;
Zhang, Xiaohong ;
Dai, Songyuan ;
Dyson, Paul J. ;
Nazeeruddin, Mohammad Khaja .
NATURE, 2024, 628 (8007) :299-305
[6]   Light-Induced Giant Rashba Spin-Orbit Coupling at Superconducting KTaO3(110) Heterointerfaces [J].
Gan, Yulin ;
Yang, Fazhi ;
Kong, Lingyuan ;
Chen, Xuejiao ;
Xu, Hao ;
Zhao, Jin ;
Li, Gang ;
Zhao, Yuchen ;
Yan, Lei ;
Zhong, Zhicheng ;
Chen, Yunzhong ;
Ding, Hong .
ADVANCED MATERIALS, 2023, 35 (25)
[7]   Managing Interfacial Defects and Carriers by Synergistic Modulation of Functional Groups and Spatial Conformation for High-Performance Perovskite Photovoltaics Based on Vacuum Flash Method [J].
Gao, Deyu ;
Li, Ru ;
Chen, Xihan ;
Chen, Cong ;
Wang, Chenglin ;
Zhang, Boxue ;
Li, Mengjia ;
Shang, Xueni ;
Yu, Xuemeng ;
Gong, Shaokuan ;
Pauporte, Thierry ;
Yang, Hua ;
Ding, Liming ;
Tang, JianXin ;
Chen, Jiangzhao .
ADVANCED MATERIALS, 2023, 35 (23)
[8]   Rethinking the Role of Excess/Residual Lead Iodide in Perovskite Solar Cells [J].
Gao, You ;
Raza, Hasan ;
Zhang, Zhengping ;
Chen, Wei ;
Liu, Zonghao .
ADVANCED FUNCTIONAL MATERIALS, 2023, 33 (26)
[9]   Grain-boundary grooves in perovskite solar cells [J].
Hao, Mingwei ;
Zhou, Yuanyuan .
JOULE, 2024, 8 (04) :913-921
[10]   Flattening Grain-Boundary Grooves for Perovskite Solar Cells with High Optomechanical Reliability [J].
Hao, Mingwei ;
Duan, Tianwei ;
Ma, Zhiwei ;
Ju, Ming-Gang ;
Bennett, Joseph A. ;
Liu, Tanghao ;
Guo, Peijun ;
Zhou, Yuanyuan .
ADVANCED MATERIALS, 2023, 35 (15)