Deep Modeling of Non-Gaussian Aleatoric Uncertainty

被引:0
作者
Acharya, Aastha [1 ,2 ]
Lee, Caleb [1 ]
D'Alonzo, Marissa [1 ]
Shamwell, Jared [1 ]
Ahmed, Nisar R. [2 ]
Russell, Rebecca [1 ]
机构
[1] Charles Stark Draper Lab Inc, Cambridge, MA 02139 USA
[2] Univ Colorado Boulder, Ann & H J Smead Dept Aerosp Engn Sci, Boulder, CO 80303 USA
关键词
Uncertainty; Estimation; Predictive models; Robot sensing systems; Deep learning; Probability density function; State estimation; Navigation; Data models; Gaussian distribution; Deep learning methods; deep learning for visual perception; vision-based navigation;
D O I
10.1109/LRA.2024.3511376
中图分类号
TP24 [机器人技术];
学科分类号
080202 ; 1405 ;
摘要
Deep learning offers promising new ways to accurately model aleatoric uncertainty in robotic state estimation systems, particularly when the uncertainty distributions do not conform to traditional assumptions of being fixed and Gaussian. In this study, we formulate and evaluate three fundamental deep learning approaches for conditional probability density modeling to quantify non-Gaussian aleatoric uncertainty: parametric, discretized, and generative modeling. We systematically compare the respective strengths and weaknesses of these three methods on simulated non-Gaussian densities as well as on real-world terrain-relative navigation data. Our results show that these deep learning methods can accurately capture complex uncertainty patterns, highlighting their potential for improving the reliability and robustness of estimation systems.
引用
收藏
页码:660 / 667
页数:8
相关论文
共 35 条
[1]   Learning to Forecast Aleatoric and Epistemic Uncertainties over Long Horizon Trajectories [J].
Acharya, Aastha ;
Russell, Rebecca ;
Ahmed, Nisar R. .
2023 IEEE INTERNATIONAL CONFERENCE ON ROBOTICS AND AUTOMATION (ICRA 2023), 2023, :12751-12757
[2]   Competency Assessment for Autonomous Agents using Deep Generative Models [J].
Acharya, Aastha ;
Russell, Rebecca ;
Ahmed, Nisar R. .
2022 IEEE/RSJ INTERNATIONAL CONFERENCE ON INTELLIGENT ROBOTS AND SYSTEMS (IROS), 2022, :8211-8218
[3]  
Arnez F., 2020, P WORKSH ART INT SAF, P1
[4]   MINIMUM HELLINGER DISTANCE ESTIMATES FOR PARAMETRIC MODELS [J].
BERAN, R .
ANNALS OF STATISTICS, 1977, 5 (03) :445-463
[5]  
Bishop C.M., 1994, NCRG94004 AST U, DOI DOI 10.1007/978-3-322-81570-58
[6]  
Chen B, 2022, AAAI CONF ARTIF INTE, P6183
[7]  
Dever C., 2017, Paper 3723
[8]  
Dinh L., 2017, INT C LEARN REPR, P1
[9]   Simultaneous localization and mapping: Part I [J].
Durrant-Whyte, Hugh ;
Bailey, Tim .
IEEE ROBOTICS & AUTOMATION MAGAZINE, 2006, 13 (02) :99-108
[10]   Estimation of conditional densities and sensitivity measures in nonlinear dynamical systems [J].
Fan, JQ ;
Yao, QW ;
Tong, H .
BIOMETRIKA, 1996, 83 (01) :189-206