Energy Efficient Robust Beamforming for Vehicular ISAC with Imperfect Channel Estimation

被引:1
作者
Zhang, Hanwen [1 ]
Sun, Haijian [1 ]
He, Tianyi [2 ]
Xiang, Weiming [3 ]
Hu, Rose Qingyang [2 ]
机构
[1] Univ Georgia, Sch Elect & Comp Engn, Athens, GA 30602 USA
[2] Utah State Univ, Coll Engn, Logan, UT 84322 USA
[3] Augusta Univ, Sch Comp & Cyber Sci, Augusta, GA USA
来源
2024 IEEE INTERNATIONAL CONFERENCE ON COMMUNICATIONS WORKSHOPS, ICC WORKSHOPS 2024 | 2024年
关键词
Integrated sensing and communications (ISAC); energy efficiency (EE); channel estimation error; Cramer-Rao bound (CRB); DESIGN; SYSTEMS;
D O I
10.1109/ICCWORKSHOPS59551.2024.10615653
中图分类号
TP3 [计算技术、计算机技术];
学科分类号
0812 ;
摘要
This paper investigates robust beamforming for system-centric energy efficiency (EE) optimization in the vehicular integrated sensing and communication (ISAC) system, where the mobility of vehicles poses significant challenges to channel estimation. To obtain the optimal beamforming under channel uncertainty, we first formulate an optimization problem for maximizing the system EE under bounded channel estimation errors. Next, fractional programming and semidefinite relaxation (SDR) are utilized to relax the rank-1 constraints. We further use Schur complement and S-Procedure to transform Cramer-Rao bound (CRB) and channel estimation error constraints into convex forms, respectively. Based on the Lagrangian dual function and Karush-Kuhn-Tucker (KKT) conditions, it is proved that the optimal beamforming solution is rank-1. Finally, we present comprehensive simulation results to demonstrate two key findings: 1) the proposed algorithm exhibits a favorable convergence rate, and 2) the approach effectively mitigates the impact of channel estimation errors.
引用
收藏
页码:1864 / 1869
页数:6
相关论文
共 20 条
  • [1] Robust Beamforming Techniques for Non-Orthogonal Multiple Access Systems with Bounded Channel Uncertainties
    Alavi, Faezeh
    Cumanan, Kanapathippillai
    Ding, Zhiguo
    Burr, Alister G.
    [J]. IEEE COMMUNICATIONS LETTERS, 2017, 21 (09) : 2033 - 2036
  • [2] Integrated Sensing and Communications (ISAC) for Vehicular Communication Networks (VCN)
    Cheng, Xiang
    Duan, Dongliang
    Gao, Shijian
    Yang, Liuqing
    [J]. IEEE INTERNET OF THINGS JOURNAL, 2022, 9 (23) : 23441 - 23451
  • [3] Du Z, 2023, Arxiv, DOI arXiv:2305.00681
  • [4] Grant M., 2014, CVX: Matlab software for disciplined convex programming, version 2.1
  • [5] Challenges and Solutions for Cellular Based V2X Communications
    Gyawali, Sohan
    Xu, Shengjie
    Qian, Yi
    Hu, Rose Qingyang
    [J]. IEEE COMMUNICATIONS SURVEYS AND TUTORIALS, 2021, 23 (01): : 222 - 255
  • [6] Energy Efficient Beamforming Optimization for Integrated Sensing and Communication
    He, Zhenyao
    Xu, Wei
    Shen, Hong
    Huang, Yongming
    Xiao, Huahua
    [J]. IEEE WIRELESS COMMUNICATIONS LETTERS, 2022, 11 (07) : 1374 - 1378
  • [7] MIMO Integrated Sensing and Communication: CRB-Rate Tradeoff
    Hua, Haocheng
    Han, Tony Xiao
    Xu, Jie
    [J]. IEEE TRANSACTIONS ON WIRELESS COMMUNICATIONS, 2024, 23 (04) : 2839 - 2854
  • [8] Dedicated Short-Range Communications (DSRC) Standards in the United States
    Kenney, John B.
    [J]. PROCEEDINGS OF THE IEEE, 2011, 99 (07) : 1162 - 1182
  • [9] Competitive Linear Estimation Under Model Uncertainties
    Kozat, Suleyman S.
    Erdogan, Alper T.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2010, 58 (04) : 2388 - 2393
  • [10] Li YX, 2023, Arxiv, DOI arXiv:2301.12787