Anchoring ordered PtZn nanoparticles on MOF-derived carbon support for efficient oxygen reduction reaction in proton exchange membrane fuel cells

被引:0
作者
Lee, Kwangho [1 ]
Lee, Eoyoon [2 ]
Chang, Hyunwoo [1 ]
Roh, Jeonghan [1 ]
Lee, Sangjae [1 ]
Bak, Junu [1 ]
Kwon, Yongkeun [1 ]
Ham, Hyung Chul [2 ]
Cho, Eunae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Inha Univ, Educ & Res Ctr Smart Energy & Mat, Dept Chem & Chem Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Anchoring effect; Ordered PtZn; Zeolitic imidazolate framework-8; Proton exchange membrane fuel cell; Oxygen reduction reaction; GENERALIZED GRADIENT APPROXIMATION; CORE-SHELL NANOPARTICLES; ENHANCED ACTIVITY; PARTICLE-SIZE; DURABILITY; ELECTROCATALYSTS; STABILITY; CATALYSTS;
D O I
10.1016/j.cej.2025.159350
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite their superior catalytic activity for the oxygen reduction reaction (ORR), ordered platinum (Pt)-transition metal nanoparticles suffer from limitations that hinder their use in polymer electrolyte membrane fuel cells (PEMFCs), such as particle growth during the ordering transformation and insufficient durability over extended operation. In this study, a zeolitic imidazolate framework-8 (ZIF-8) is pyrolyzed into zinc and nitrogen-doped carbon (ZnNC). Pt nanoparticles are synthesized on the ZnNC and undergo heat treatment. Through this simple process, ordered PtZn nanoparticles are obtained with an average particle size of approximately 4.5 nm (OPtZn/ZnNC). In a half-cell, the O-PtZn/ZnNC achieves outstanding ORR mass activity (1.21 A mg Pt- 1 at 0.9 V) and durability (35 % loss of mass activity after 30 k cycles), significantly surpassing Pt/C (0.41 A mg Pt- 1 and 61 % loss). As a cathode catalyst of a PEMFC, the O-PtZn/ZnNC outperforms Pt/C in both performance and durability; O-PtZn/ZnNC and Pt/C cells exhibit current densities of 71 and 39 mA cm- 2 , respectively, at a cell voltage of 0.8 V. These values fall to 43 (-39 %) and 11 (-72 %) mA cm- 2 , respectively, after 30 k cycles. Density functional theory calculations illustrate that ZnNC has a strong binding energy with O-PtZn (-8.13 eV) and a small interfacial minimum distance of 2.03 & Aring;, resulting in exceptional retention of electrochemical active surface area retention for O-PtZn/ZnNC (-7%, from 57.9 to 53.8 m2 g Pt-1 , after 30 k cycles).
引用
收藏
页数:10
相关论文
共 52 条
[11]   Random Alloyed versus Intermetallic Nanoparticles: A Comparison of Electrocatalytic Performance [J].
Gamler, Jocelyn T. L. ;
Ashberry, Hannah M. ;
Skrabalak, Sara E. ;
Koczkur, Kallum M. .
ADVANCED MATERIALS, 2018, 30 (40)
[12]   Origin of High Activity and Durability of Confined Ordered Intermetallic PtCo Catalysts for the Oxygen Reduction Reaction in Rotating Disk Electrode and Fuel Cell Operating Conditions [J].
Gao, Yunfei ;
Uchiyama, Tomoki ;
Yamamoto, Kentaro ;
Watanabe, Toshiki ;
Tominaka, Satoshi ;
Thakur, Neha ;
Sato, Ryota ;
Teranishi, Toshiharu ;
Imai, Hideto ;
Sakurai, Yoshiharu ;
Uchimoto, Yoshiharu .
ACS CATALYSIS, 2023, 13 (16) :10988-11000
[13]   Optimizing PtFe intermetallics for oxygen reduction reaction: from DFT screening to in situ XAFS characterization [J].
Gong, Mingxing ;
Zhu, Jing ;
Liu, Mingjie ;
Liu, Peifang ;
Deng, Zhiping ;
Shen, Tao ;
Zhao, Tonghui ;
Lin, Ruoqian ;
Lu, Yun ;
Yang, Shize ;
Liang, Zhixiu ;
Bak, Seong Min ;
Stavitski, Eli ;
Wu, Qin ;
Adzic, Radoslav R. ;
Xin, Huolin L. ;
Wang, Deli .
NANOSCALE, 2019, 11 (42) :20301-20306
[14]   A consistent and accurate ab initio parametrization of density functional dispersion correction (DFT-D) for the 94 elements H-Pu [J].
Grimme, Stefan ;
Antony, Jens ;
Ehrlich, Stephan ;
Krieg, Helge .
JOURNAL OF CHEMICAL PHYSICS, 2010, 132 (15)
[15]   Size-Controlled Intermetallic PtZn Nanoparticles on N-Doped Carbon Support for Enhanced Electrocatalytic Oxygen Reduction [J].
Han, Xiao ;
Wang, Quxiang ;
Zheng, Zhiping ;
Nan, Ziang ;
Zhang, Xibo ;
Song, Zhijia ;
Ma, Min ;
Zheng, Jun ;
Kuang, Qin ;
Zheng, Lansun .
ACS SUSTAINABLE CHEMISTRY & ENGINEERING, 2021, 9 (10) :3821-3827
[16]   Recent Advances in Carbon Supported Metal Nanoparticles Preparation for Oxygen Reduction Reaction in Low Temperature Fuel Cells [J].
Holade, Yaovi ;
Sahin, Nihat Ege ;
Servat, Karine ;
Napporn, Teko W. ;
Kokoh, Kouakou B. .
CATALYSTS, 2015, 5 (01) :310-348
[17]   Sabatier principle of metal-support interaction for design of ultrastable metal nanocatalysts [J].
Hu, Sulei ;
Li, Wei-Xue .
SCIENCE, 2021, 374 (6573) :1360-+
[18]   Metal-support interaction controlled migration and coalescence of supported particles [J].
Hu Sulei ;
Li Wei-Xue .
SCIENCE CHINA-TECHNOLOGICAL SCIENCES, 2019, 62 (05) :762-772
[19]   Commentary: The Materials Project: A materials genome approach to accelerating materials innovation [J].
Jain, Anubhav ;
Shyue Ping Ong ;
Hautier, Geoffroy ;
Chen, Wei ;
Richards, William Davidson ;
Dacek, Stephen ;
Cholia, Shreyas ;
Gunter, Dan ;
Skinner, David ;
Ceder, Gerbrand ;
Persson, Kristin A. .
APL MATERIALS, 2013, 1 (01)
[20]   Does the Encapsulation Strategy of Pt Nanoparticles with Carbon Layers Really Ensure Both Highly Active and Durable Electrocatalysis in Fuel Cells? [J].
Ji, Sang Gu ;
Kwon, Han Chang ;
Kim, Tae-Hoon ;
Sim, Uk ;
Choi, Chang Hyuck .
ACS CATALYSIS, 2022, 12 (12) :7317-7325