Anchoring ordered PtZn nanoparticles on MOF-derived carbon support for efficient oxygen reduction reaction in proton exchange membrane fuel cells

被引:0
作者
Lee, Kwangho [1 ]
Lee, Eoyoon [2 ]
Chang, Hyunwoo [1 ]
Roh, Jeonghan [1 ]
Lee, Sangjae [1 ]
Bak, Junu [1 ]
Kwon, Yongkeun [1 ]
Ham, Hyung Chul [2 ]
Cho, Eunae [1 ]
机构
[1] Korea Adv Inst Sci & Technol, Dept Mat Sci & Engn, 291 Daehak Ro, Daejeon 34141, South Korea
[2] Inha Univ, Educ & Res Ctr Smart Energy & Mat, Dept Chem & Chem Engn, Incheon 22212, South Korea
基金
新加坡国家研究基金会;
关键词
Anchoring effect; Ordered PtZn; Zeolitic imidazolate framework-8; Proton exchange membrane fuel cell; Oxygen reduction reaction; GENERALIZED GRADIENT APPROXIMATION; CORE-SHELL NANOPARTICLES; ENHANCED ACTIVITY; PARTICLE-SIZE; DURABILITY; ELECTROCATALYSTS; STABILITY; CATALYSTS;
D O I
10.1016/j.cej.2025.159350
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
Despite their superior catalytic activity for the oxygen reduction reaction (ORR), ordered platinum (Pt)-transition metal nanoparticles suffer from limitations that hinder their use in polymer electrolyte membrane fuel cells (PEMFCs), such as particle growth during the ordering transformation and insufficient durability over extended operation. In this study, a zeolitic imidazolate framework-8 (ZIF-8) is pyrolyzed into zinc and nitrogen-doped carbon (ZnNC). Pt nanoparticles are synthesized on the ZnNC and undergo heat treatment. Through this simple process, ordered PtZn nanoparticles are obtained with an average particle size of approximately 4.5 nm (OPtZn/ZnNC). In a half-cell, the O-PtZn/ZnNC achieves outstanding ORR mass activity (1.21 A mg Pt- 1 at 0.9 V) and durability (35 % loss of mass activity after 30 k cycles), significantly surpassing Pt/C (0.41 A mg Pt- 1 and 61 % loss). As a cathode catalyst of a PEMFC, the O-PtZn/ZnNC outperforms Pt/C in both performance and durability; O-PtZn/ZnNC and Pt/C cells exhibit current densities of 71 and 39 mA cm- 2 , respectively, at a cell voltage of 0.8 V. These values fall to 43 (-39 %) and 11 (-72 %) mA cm- 2 , respectively, after 30 k cycles. Density functional theory calculations illustrate that ZnNC has a strong binding energy with O-PtZn (-8.13 eV) and a small interfacial minimum distance of 2.03 & Aring;, resulting in exceptional retention of electrochemical active surface area retention for O-PtZn/ZnNC (-7%, from 57.9 to 53.8 m2 g Pt-1 , after 30 k cycles).
引用
收藏
页数:10
相关论文
共 52 条
  • [1] Alloy vs. intermetallic compounds: Effect of the ordering on the electrocatalytic activity for oxygen reduction and the stability of low temperature fuel cell catalysts
    Antolini, Ermete
    [J]. APPLIED CATALYSIS B-ENVIRONMENTAL, 2017, 217 : 201 - 213
  • [2] Atomically dispersed Fe-N-C decorated with Pt-alloy core-shell nanoparticles for improved activity and durability towards oxygen reduction
    Ao, Xiang
    Zhang, Wei
    Zhao, Bote
    Ding, Yong
    Nam, Gyutae
    Soule, Luke
    Abdelhafiz, Ali
    Wang, Chundong
    Liu, Meilin
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2020, 13 (09) : 3032 - 3040
  • [3] Current Status and Future Development of Catalyst Materials and Catalyst Layers for Proton Exchange Membrane Fuel Cells: An Industrial Perspective
    Banham, Dustin
    Ye, Siyu
    [J]. ACS ENERGY LETTERS, 2017, 2 (03): : 629 - 638
  • [4] PROJECTOR AUGMENTED-WAVE METHOD
    BLOCHL, PE
    [J]. PHYSICAL REVIEW B, 1994, 50 (24): : 17953 - 17979
  • [5] Zeolitic imidazolate framework materials: recent progress in synthesis and applications
    Chen, Binling
    Yang, Zhuxian
    Zhu, Yanqiu
    Xia, Yongde
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2014, 2 (40) : 16811 - 16831
  • [6] Highly Durable and Active PtFe Nanocatalyst for Electrochemical Oxygen Reduction Reaction
    Chung, Dong Young
    Jun, Samuel Woojoo
    Yoon, Gabin
    Kwon, Soon Gu
    Shin, Dong Yun
    Seo, Pilseon
    Yoo, Ji Mun
    Shin, Heejong
    Chung, Young-Hoon
    Kim, Hyunjoong
    Mun, Bongjin Simon
    Lee, Kug-Seung
    Lee, Nam-Suk
    Yoo, Sung Jong
    Lim, Dong-Hee
    Kang, Kisuk
    Sung, Yung-Eun
    Hyeon, Taeghwan
    [J]. JOURNAL OF THE AMERICAN CHEMICAL SOCIETY, 2015, 137 (49) : 15478 - 15485
  • [7] Stability of platinum based alloy cathode catalysts in PEM fuel cells
    Colón-Mercado, HR
    Popov, BN
    [J]. JOURNAL OF POWER SOURCES, 2006, 155 (02) : 253 - 263
  • [8] New roads and challenges for fuel cells in heavy-duty transportation
    Cullen, David A.
    Neyerlin, K. C.
    Ahluwalia, Rajesh K.
    Mukundan, Rangachary
    More, Karren L.
    Borup, Rodney L.
    Weber, Adam Z.
    Myers, Deborah J.
    Kusoglu, Ahmet
    [J]. NATURE ENERGY, 2021, 6 (05) : 462 - 474
  • [9] Fine-grained and fully ordered intermetallic PtFe catalysts with largely enhanced catalytic activity and durability
    Du, Xin Xin
    He, Yang
    Wang, Xiao Xia
    Wang, Jian Nong
    [J]. ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (08) : 2623 - 2632
  • [10] Bridging the gap between highly active oxygen reduction reaction catalysts and effective catalyst layers for proton exchange membrane fuel cells
    Fan, Jiantao
    Chen, Ming
    Zhao, Zhiliang
    Zhang, Zhen
    Ye, Siyu
    Xu, Shaoyi
    Wang, Haijiang
    Li, Hui
    [J]. NATURE ENERGY, 2021, 6 (05) : 475 - 486