In-Situ One-Step Hydrothermal Synthesis of LiTi2(PO4)3@rGO Anode for High Performance Lithium-Ion Batteries

被引:0
作者
Zoubir, Otmane [1 ,2 ]
Lallaoui, Abdelfettah [2 ]
Oubla, M'hamed [1 ]
Tesio, Alvaro Y. [3 ]
Caballero, Alvaro [4 ]
Edfouf, Zineb [1 ,2 ]
机构
[1] Mohammed V Univ Rabat, Fac Sci, Mat & Nanomat Photovolta & Electrochem Storage MAN, Rabat, Morocco
[2] Moroccan Fdn Adv Sci Innovat & Res MAScIR, Hay Moulay Rachid, CCI, UM6P, Ben Guerir 43150, Morocco
[3] Ctr Invest & Desarrollo Mat Avanzados & Almacenami, Ctr Desarrollo Tecnol Gen Manuel Savio, RA-4612 Palpala, Jujuy, Argentina
[4] Univ Cordoba, Dept Quim Inorgan, Inst Quim Energia & Medioambiente, Campus Rabanales, 14014 Cordoba, Spain
关键词
Li-ion batteries; anode material; NASICON structure; hydrothermal; in situ synthesis; VIBRATIONAL-SPECTRA; ELECTRODE MATERIALS; TITANIUM-PHOSPHATE; SOLID-ELECTROLYTE; HIGH-POWER; NANOCOMPOSITE; NANOMATERIALS; CAPABILITY; COMPOSITE;
D O I
10.3390/ma18061329
中图分类号
O64 [物理化学(理论化学)、化学物理学];
学科分类号
070304 ; 081704 ;
摘要
The sodium super ionic conductor (NASICON) structured LiTi2(PO4)3 (LTP) has been developed as electrode material for Li-ion batteries (LIBs) with promising electrochemical performance, owing to its outstanding structural stability and rapid lithium-ion diffusion. Nevertheless, challenges still exist, especially the rapid capacity fading caused by the low electronic conductivity of LTP-NASICON material. Recently, the hydrothermal method has emerged as an important technique for the production of diverse nano-electrode materials due to its low preparation temperature, high phase purity, and well-controlled morphology and crystallinity. Herein, we report, for the first time at low-moderate temperatures, an advanced hydrothermal synthesis of LTP-coated reduced graphene oxide (LTP@rGO) particles that includes the growth of LTP particles while simultaneously coating them with rGO material. The LTP offers a discharge specific capacity of 84 mAh/g, while the LTP@rGO delivers a discharge capacity of 147 mAh/g, both with a coulombic efficiency of 99.5% after 100 cycles at a 1C rate.
引用
收藏
页数:14
相关论文
共 50 条
[1]   Carbon coated nano-LiTi2(PO4)3 electrodes for non-aqueous hybrid supercapacitors [J].
Aravindan, V. ;
Chuiling, W. ;
Reddy, M. V. ;
Rao, G. V. Subba ;
Chowdari, B. V. R. ;
Madhavi, S. .
PHYSICAL CHEMISTRY CHEMICAL PHYSICS, 2012, 14 (16) :5808-5814
[2]   Carbon-Coated LiTi2(PO4)3: An Ideal Insertion Host for Lithium-Ion and Sodium-Ion Batteries [J].
Aravindan, Vanchiappan ;
Ling, Wong Chui ;
Hartung, Steffen ;
Bucher, Nicolas ;
Madhavi, Srinivasan .
CHEMISTRY-AN ASIAN JOURNAL, 2014, 9 (03) :878-882
[3]   NASICON type ordered mesoporous lithium-aluminum-titanium-phosphate as electrode materials for lithium-ion batteries [J].
Bhanja, Piyali ;
Senthil, Chenrayan ;
Patra, Astam Kumar ;
Sasidharan, Manickam ;
Bhaumik, Asim .
MICROPOROUS AND MESOPOROUS MATERIALS, 2017, 240 :57-64
[4]   Nanomaterials for rechargeable lithium batteries [J].
Bruce, Peter G. ;
Scrosati, Bruno ;
Tarascon, Jean-Marie .
ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2008, 47 (16) :2930-2946
[5]   Reactive spark plasma synthesis of Mo2C/Mo3Co3C ceramic for heterostructured electrodes used for hydrogen energy technology [J].
Buravlev, I. Yu. ;
Vornovskikh, A. A. ;
Shichalin, O. O. ;
Lembikov, A. O. ;
Simonenko, T. L. ;
Seroshtan, A. I. ;
Buravleva, A. A. ;
Belov, A. A. ;
Kosyanov, D. Yu ;
Papynov, E. K. .
CERAMICS INTERNATIONAL, 2024, 50 (09) :14445-14457
[6]  
Cheng H, 2021, J ENERGY CHEM, V57, P451, DOI [10.1016/j.jechem.2020.08.056, 10.1016/j.jechem.2020.08.0562095-4956/]
[7]   Hydrothermal and Solvothermal Process Towards Development of LiMPO4 (M = Fe, Mn) Nanomaterials for Lithium-Ion Batteries [J].
Devaraju, Murukanahally Kempaiah ;
Honma, Itaru .
ADVANCED ENERGY MATERIALS, 2012, 2 (03) :284-297
[8]   The cathode-electrolyte interface in the Li-ion battery [J].
Edström, K ;
Gustafsson, T ;
Thomas, JO .
ELECTROCHIMICA ACTA, 2004, 50 (2-3) :397-403
[9]  
Fang S., 2022, TRANSITION METAL OXI, V10, P55, DOI [DOI 10.1002/9783527817252.CH4, 10.1002/9783527817252.ch4]
[10]   Lithium storage capability of lithium ion conductor Li1.5Al0.5Ge1.5(PO4)3 [J].
Feng, J. K. ;
Lu, L. ;
Lai, M. O. .
JOURNAL OF ALLOYS AND COMPOUNDS, 2010, 501 (02) :255-258