WsiCaption: Multiple Instance Generation of Pathology Reports for Gigapixel Whole-Slide Images

被引:2
|
作者
Chen, Pingyi [1 ,2 ,3 ]
Li, Honglin [1 ,2 ,3 ]
Zhu, Chenglu [2 ,3 ]
Zheng, Sunyi [2 ,3 ]
Shui, Zhongyi [1 ,2 ,3 ]
Yang, Lin [2 ,3 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Westlake Univ, Res Ctr Ind Future, Hangzhou, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Whole Slide Images; Image Caption; Visual-language; Learning;
D O I
10.1007/978-3-031-72083-3_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whole slide images are the foundation of digital pathology for the diagnosis and treatment of carcinomas. Writing pathology reports is laborious and error-prone for inexperienced pathologists. To reduce the workload and improve clinical automation, we investigate how to generate pathology reports given whole slide images. On the data end, we curated the largest WSI-text dataset (PathText). In specific, we collected nearly 10000 high-quality WSI-text pairs for visuallanguage models by recognizing and cleaning pathology reports which narrate diagnostic slides in TCGA. On the model end, we propose the multiple instance generative model (MI-Gen) which can produce pathology reports for gigapixel WSIs. We benchmark our model on the largest subset of PathText. Experimental results show our model can generate pathology reports which contain multiple clinical clues and achieve competitive performance on certain slide-level tasks. We observe that simple semantic extraction from the pathology reports can achieve the best performance (0.838 of F1 score) on BRCA subtyping surpassing previous state-of-the-art approaches. Our collected dataset and related code are available at https://github.com/cpystan/Wsi-Caption.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 50 条
  • [21] Data-efficient and weakly supervised computational pathology on whole-slide images
    Lu, Ming Y.
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Chen, Richard J.
    Barbieri, Matteo
    Mahmood, Faisal
    NATURE BIOMEDICAL ENGINEERING, 2021, 5 (06) : 555 - +
  • [22] Prototypical multiple instance learning for predicting lymph node metastasis of breast cancer from whole-slide pathological images
    Yu, Jin-Gang
    Wu, Zihao
    Ming, Yu
    Deng, Shule
    Li, Yuanqing
    Ou, Caifeng
    He, Chunjiang
    Wang, Baiye
    Zhang, Pusheng
    Wang, Yu
    MEDICAL IMAGE ANALYSIS, 2023, 85
  • [23] Fast ScanNet: Fast and Dense Analysis of Multi-Gigapixel Whole-Slide Images for Cancer Metastasis Detection
    Lin, Huangjing
    Chen, Hao
    Graham, Simon
    Dou, Qi
    Rajpoot, Nasir
    Pheng-Ann Heng
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2019, 38 (08) : 1948 - 1958
  • [24] End-to-end Multiple Instance Learning for Whole-Slide Cytopathology of Urothelial Carcinoma
    Butke, Joshua
    Frick, Tatjana
    Roghmann, Florian
    El-Mashtoly, Samir F.
    Gerwert, Klaus
    Mosig, Axel
    MICCAI WORKSHOP ON COMPUTATIONAL PATHOLOGY, VOL 156, 2021, 156 : 57 - 68
  • [25] VALIS: Virtual Alignment of pathoLogy Image Series for multi-gigapixel whole slide images
    Gatenbee, Chandler Dean
    Baker, Ann-Marie
    Prabhakaran, Sandhya
    Robertson-Tessi, Mark
    Graham, Trevor
    Anderson, Alexander R.
    CANCER RESEARCH, 2023, 83 (07)
  • [26] nnUNet meets pathology: bridging the gap for application to whole-slide images and computational biomarkers
    Spronck, Joey
    Gelton, Thijs
    van Eekelen, Leander
    Bogaerts, Joep
    Tessier, Leslie
    van Rijthoven, Mart
    van der Woudel, Lieke
    van den Heuvel, Michel
    Theelen, Willemijn
    van der Laakl, Jeroen
    Ciompi, Francesco
    MEDICAL IMAGING WITH DEEP LEARNING, VOL 227, 2023, 227 : 1859 - 1874
  • [27] Digital Imaging in Pathology: Whole-Slide Imaging and Beyond
    Ghaznavi, Farzad
    Evans, Andrew
    Madabhushi, Anant
    Feldman, Michael
    ANNUAL REVIEW OF PATHOLOGY: MECHANISMS OF DISEASE, VOL 8, 2013, 8 : 331 - 359
  • [28] Whole-Slide Imaging in the Routine Diagnosis in Gynecological Pathology
    Ordi, J.
    Castillo, P.
    del Pino, M.
    Ordi, O.
    Radiguez-Carunchio, L.
    Millan, R.
    Garcia, C.
    Ramirez, J.
    LABORATORY INVESTIGATION, 2014, 94 : 401A - 402A
  • [29] Whole-slide imaging in pathology: the potential impact on PACS
    Horii, Steven C.
    MEDICAL IMAGING 2007: PACS AND IMAGING INFORMATICS, 2007, 6516
  • [30] Whole-Slide Imaging in the Routine Diagnosis in Gynecological Pathology
    Ordi, J.
    Castillo, P.
    del Pino, M.
    Ordi, O.
    Rodiguez-Carunchio, L.
    Millan, R.
    Garcia, C.
    Ramirez, J.
    MODERN PATHOLOGY, 2014, 27 : 401A - 402A