WsiCaption: Multiple Instance Generation of Pathology Reports for Gigapixel Whole-Slide Images

被引:2
|
作者
Chen, Pingyi [1 ,2 ,3 ]
Li, Honglin [1 ,2 ,3 ]
Zhu, Chenglu [2 ,3 ]
Zheng, Sunyi [2 ,3 ]
Shui, Zhongyi [1 ,2 ,3 ]
Yang, Lin [2 ,3 ]
机构
[1] Zhejiang Univ, Hangzhou, Peoples R China
[2] Westlake Univ, Res Ctr Ind Future, Hangzhou, Peoples R China
[3] Westlake Univ, Sch Engn, Hangzhou, Peoples R China
基金
中国国家自然科学基金;
关键词
Whole Slide Images; Image Caption; Visual-language; Learning;
D O I
10.1007/978-3-031-72083-3_51
中图分类号
TP18 [人工智能理论];
学科分类号
081104 ; 0812 ; 0835 ; 1405 ;
摘要
Whole slide images are the foundation of digital pathology for the diagnosis and treatment of carcinomas. Writing pathology reports is laborious and error-prone for inexperienced pathologists. To reduce the workload and improve clinical automation, we investigate how to generate pathology reports given whole slide images. On the data end, we curated the largest WSI-text dataset (PathText). In specific, we collected nearly 10000 high-quality WSI-text pairs for visuallanguage models by recognizing and cleaning pathology reports which narrate diagnostic slides in TCGA. On the model end, we propose the multiple instance generative model (MI-Gen) which can produce pathology reports for gigapixel WSIs. We benchmark our model on the largest subset of PathText. Experimental results show our model can generate pathology reports which contain multiple clinical clues and achieve competitive performance on certain slide-level tasks. We observe that simple semantic extraction from the pathology reports can achieve the best performance (0.838 of F1 score) on BRCA subtyping surpassing previous state-of-the-art approaches. Our collected dataset and related code are available at https://github.com/cpystan/Wsi-Caption.
引用
收藏
页码:546 / 556
页数:11
相关论文
共 50 条
  • [1] Differentiable Zooming for Multiple Instance Learning on Whole-Slide Images
    Thandiackal, Kevin
    Chen, Boqi
    Pati, Pushpak
    Jaume, Guillaume
    Williamson, Drew F. K.
    Gabrani, Maria
    Goksel, Orcun
    COMPUTER VISION, ECCV 2022, PT XXI, 2022, 13681 : 699 - 715
  • [2] Generating highly accurate pathology reports from gigapixel whole slide images with HistoGPT
    Tran, M.
    Schmidle, P.
    Wagner, S. J.
    Koch, V.
    Luppberger, V.
    Feuchtinger, A.
    Boehner, A.
    Kaczmarczyk, R.
    Biedermann, T.
    Eyerich, K.
    Braun, S.
    Peng, T.
    Marr, C.
    VIRCHOWS ARCHIV, 2024, 485 : S117 - S117
  • [3] AdvMIL: Adversarial multiple instance learning for the survival analysis on whole-slide images
    Liu, Pei
    Ji, Luping
    Ye, Feng
    Fu, Bo
    MEDICAL IMAGE ANALYSIS, 2024, 91
  • [4] Gigapixel Whole-Slide Images Classification Using Locally Supervised Learning
    Zhang, Jingwei
    Zhang, Xin
    Ma, Ke
    Gupta, Rajarsi
    Saltz, Joel
    Vakalopoulou, Maria
    Samaras, Dimitris
    MEDICAL IMAGE COMPUTING AND COMPUTER ASSISTED INTERVENTION, MICCAI 2022, PT II, 2022, 13432 : 192 - 201
  • [5] Federated learning for computational pathology on gigapixel whole slide images
    Lu, Ming Y.
    Chen, Richard J.
    Kong, Dehan
    Lipkova, Jana
    Singh, Rajendra
    Williamson, Drew F. K.
    Chen, Tiffany Y.
    Mahmood, Faisal
    MEDICAL IMAGE ANALYSIS, 2022, 76
  • [6] Dual-Attention Multiple Instance Learning Framework for Pathology Whole-Slide Image Classification
    Liu, Dehua
    Li, Chengming
    Hu, Xiping
    Hu, Bin
    ELECTRONICS, 2024, 13 (22)
  • [7] Multiple-instance-learning-based detection of coeliac disease in histological whole-slide images
    Denholm, J.
    Schreiber, B. A.
    Evans, S. E.
    Crook, O. M.
    Sharma, A.
    Watson, J. L.
    Bancroft, H.
    Langman, G.
    Gilbey, J. D.
    Shonlieb, C. B.
    Arends, M. J.
    Soilleux, E. J.
    JOURNAL OF PATHOLOGY, 2023, 261 : S3 - S3
  • [8] Label Cleaning Multiple Instance Learning: Refining Coarse Annotations on Single Whole-Slide Images
    Wang, Zhenzhen
    Saoud, Carla
    Wangsiricharoen, Sintawat
    James, Aaron W.
    Popel, Aleksander S.
    Sulam, Jeremias
    IEEE TRANSACTIONS ON MEDICAL IMAGING, 2022, 41 (12) : 3952 - 3968
  • [9] Pathology imaging informatics for quantitative analysis of whole-slide images
    Kothari, Sonal
    Phan, John H.
    Stokes, Todd H.
    Wang, May D.
    JOURNAL OF THE AMERICAN MEDICAL INFORMATICS ASSOCIATION, 2013, 20 (06) : 1099 - 1108
  • [10] Transform Optimization for the Lossy Coding of Pathology Whole-Slide Images
    Hernandez-Cabronero, Miguel
    Auli-Llinas, Francesc
    Sanchez, Victor
    Serra-Sagrista, Joan
    2016 DATA COMPRESSION CONFERENCE (DCC), 2016, : 131 - 140