QUALITATIVE BEHAVIOR OF SOLUTIONS FOR A CHEMOTAXIS-HAPTOTAXIS MODEL WITH FLUX LIMITATION

被引:0
作者
Wu, Chun [1 ]
机构
[1] Chongqing Normal Univ, Sch Math Sci, Chongqing 401331, Peoples R China
关键词
Chemotaxis; boundedness; flux limitation; logistic source; GLOBAL EXISTENCE; CANCER INVASION; SYSTEM; TISSUE; BOUNDEDNESS;
D O I
10.3934/eect.2024054
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
In this paper, the following the coupled chemotaxis-haptotatxis system under zero-flux boundary conditions is studied: {u(t)= triangle u-chi del<middle dot>(u del(v)/(1+|del v|(2))(alpha)!-xi del<middle dot>(u del w) +mu u(1-u-w), x is an element of ohm, t >0, 0 = triangle v-v+u, x is an element of ohm, t >0, w(t)=-vw, x is an element of ohm, t >0, in a smooth and bounded domain ohm subset of R-n(n >= 2) under homogeneous Neu-mann boundary conditions, where chi, xi, and mu are given positive parameters.For sufficiently smooth initial data (u(0),w(0)), it is demonstrated that the prob-lem possesses a unique global bounded classical solution, which is uniformlybounded in time.
引用
收藏
页码:275 / 288
页数:14
相关论文
共 25 条
[1]  
BILER P, 1995, C MATH, V68, P229
[2]  
Chaplain MAJ, 2006, NETW HETEROG MEDIA, V1, P399
[3]   Mathematical modelling of cancer cell invasion of tissue: The role of the urokinase plasminogen activation system [J].
Chaplain, MAJ ;
Lolas, G .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2005, 15 (11) :1685-1734
[4]   A chemotaxis model motivated by angiogenesis [J].
Corrias, L ;
Perthame, B ;
Zaag, H .
COMPTES RENDUS MATHEMATIQUE, 2003, 336 (02) :141-146
[5]  
Corrias L., 2004, MILAN J MATH, V72, P1
[6]  
Gilbarg D., 1983, Grundlehren Math. Wiss.
[7]  
Herrero M., 1997, ANN SCUOLA NORM-SCI, V24, P633
[8]   A stochastic multiscale model for acid mediated cancer invasion [J].
Hiremath, Sandesh ;
Surulescu, Christina .
NONLINEAR ANALYSIS-REAL WORLD APPLICATIONS, 2015, 22 :176-205
[10]   ASYMPTOTIC BEHAVIOR OF GLOBAL SOLUTIONS TO A MODEL OF CELL INVASION [J].
Litcanu, Gabriela ;
Morales-Rodrigo, Cristian .
MATHEMATICAL MODELS & METHODS IN APPLIED SCIENCES, 2010, 20 (09) :1721-1758