Quickest Change Detection With Post-Change Density Estimation

被引:0
作者
Liang, Yuchen [1 ,2 ,3 ]
Veeravalli, Venugopal V. [1 ,2 ]
机构
[1] Univ Illinois, ECE Dept, Urbana, IL 61801 USA
[2] Univ Illinois, Coordinated Sci Lab, Urbana, IL 61801 USA
[3] Ohio State Univ, ECE Dept, Columbus, OH 43210 USA
基金
美国国家科学基金会;
关键词
Quickest change detection (QCD); (kernel) density estimation; non- parametric statistics; sequential methods; CHANGE-POINT DETECTION;
D O I
10.1109/TIT.2024.3418379
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
The problem of quickest change detection in a sequence of independent observations is considered. The pre-change distribution is assumed to be known, while the post-change distribution is unknown. Two tests based on post-change density estimation are developed for this problem, the window-limited non-parametric generalized likelihood ratio (NGLR) CuSum test and the non-parametric window-limited adaptive (NWLA) CuSum test. Both tests do not assume any knowledge of the post-change distribution, except that the post-change density satisfies certain smoothness conditions that allows for efficient non-parametric estimation; also, they do not require any pre-collected post-change training samples. Under certain convergence conditions on the density estimator, it is shown that both tests are first-order asymptotically optimal, as the false alarm rate goes to zero. The analysis is validated through numerical results, where both tests are compared with baseline tests that have distributional knowledge.
引用
收藏
页码:8072 / 8086
页数:15
相关论文
共 27 条
  • [11] A Binning Approach to Quickest Change Detection With Unknown Post-change Distribution
    Lau, Tze Siong
    Tay, Wee Peng
    Veeravalli, Venugopal V.
    [J]. IEEE TRANSACTIONS ON SIGNAL PROCESSING, 2019, 67 (03) : 609 - 621
  • [12] Li Shuang, 2015, Advances in Neural Information Processing Systems, V28
  • [13] Liang Y., 2023, P IEEE INT C AC SPEE, P1
  • [14] Quickest Change Detection With Non-Stationary Post-Change Observations
    Liang, Yuchen
    Tartakovsky, Alexander G.
    Veeravalli, Venugopal V.
    [J]. IEEE TRANSACTIONS ON INFORMATION THEORY, 2023, 69 (05) : 3400 - 3414
  • [15] Sequential (Quickest) Change Detection: Classical Results and New Directions
    Xie L.
    Zou S.
    Xie Y.
    Veeravalli V.V.
    [J]. IEEE Journal on Selected Areas in Information Theory, 2021, 2 (02): : 494 - 514
  • [16] PROCEDURES FOR REACTING TO A CHANGE IN DISTRIBUTION
    LORDEN, G
    [J]. ANNALS OF MATHEMATICAL STATISTICS, 1971, 42 (06): : 1897 - &
  • [17] Moulin P., 2018, STAT INFERENCE ENG D, DOI 10.1017/9781107185920
  • [18] Moustakides G. V., 2019, arXiv
  • [19] OPTIMAL STOPPING-TIMES FOR DETECTING CHANGES IN DISTRIBUTIONS
    MOUSTAKIDES, GV
    [J]. ANNALS OF STATISTICS, 1986, 14 (04) : 1379 - 1387
  • [20] PAGE ES, 1954, BIOMETRIKA, V41, P100, DOI 10.1093/biomet/41.1-2.100