Numerical solution of source identification multi-point problem of parabolic partial differential equation with Neumann type boundary condition

被引:0
作者
Ashyralyyev, C. [1 ,2 ,3 ]
Ashyralyyeva, T. A. [4 ]
机构
[1] Bahcesehir Univ, Istanbul, Turkiye
[2] Khoja Akhmet Yassawi Int Kazakh Turkish Univ, Turkestan, Kazakhstan
[3] Natl Univ Uzbekistan, Tashkent, Uzbekistan
[4] Yagshygeldi Kakayev Int Univ Oil & Gas, Dept Informat & Informat Technol, Ashkhabad, Turkmenistan
来源
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS SERIES | 2024年 / 115卷 / 03期
关键词
inverse problem; source identification; parabolic equation; difference scheme; stability; nonlocal; condition; boundary value problem; well-posedness; stability estimates; mixed problem; INVERSE PROBLEM; INVOLUTION;
D O I
10.31489/2024M3/66-76
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
We study a source identification boundary value problem for a parabolic partial differential equation with multi-point Neumann type boundary condition. Stability estimates for the solution of the overdetermined mixed BVP for multi-dimensional parabolic equation were established. The first and second order of accuracy difference schemes for the approximate solution of this problem were proposed. Stability estimates for both difference schemes were obtained. The result of numerical illustration in test example was given.
引用
收藏
页码:66 / 76
页数:11
相关论文
共 28 条
[1]   Inverse Problem for Source Function in Parabolic Equation at Neumann Boundary Conditions [J].
Andreev, Victor K. ;
Stepanova, Irina, V .
JOURNAL OF SIBERIAN FEDERAL UNIVERSITY-MATHEMATICS & PHYSICS, 2021, 14 (04) :445-451
[2]   Stable difference schemes for hyperbolic-parabolic equations with unknown parameter [J].
Ashyraliyev, Maksat ;
Ashyralyyeva, Maral .
BOLETIN DE LA SOCIEDAD MATEMATICA MEXICANA, 2024, 30 (01)
[3]   Numerical solution of the boundary value problems for the parabolic equation with involution [J].
Ashyralyev, A. ;
Ashyralyyev, C. ;
Ahmed, A. M. S. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2023, 109 (01) :48-57
[4]   On the Stability of Parabolic Differential and Difference Equations with a Time-Nonlocal Condition [J].
Ashyralyev, A. ;
Ashyralyyev, C. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2022, 62 (06) :962-973
[5]   Parabolic time dependent source identification problem with involution and Neumann condition [J].
Ashyralyev, A. ;
Erdogan, A. S. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2021, 102 (02) :5-15
[6]   A note on the parabolic identification problem with involution and Dirichlet condition [J].
Ashyralyev, A. ;
Erdogan, A. S. ;
Sarsenbi, A. .
BULLETIN OF THE KARAGANDA UNIVERSITY-MATHEMATICS, 2020, 99 (03) :130-139
[7]   Identification Problem for Telegraph-Parabolic Equations [J].
Ashyralyev, A. ;
Ashyraliyev, M. ;
Ashyralyyeva, M. A. .
COMPUTATIONAL MATHEMATICS AND MATHEMATICAL PHYSICS, 2020, 60 (08) :1294-1305
[8]   On the determination of the right-hand side in a parabolic equation [J].
Ashyralyev, A. ;
Erdogan, A. S. ;
Demirdag, O. .
APPLIED NUMERICAL MATHEMATICS, 2012, 62 (11) :1672-1683
[9]   ON THE PROBLEM OF DETERMINING THE PARAMETER OF A PARABOLIC EQUATION [J].
Ashyralyev, A. .
UKRAINIAN MATHEMATICAL JOURNAL, 2011, 62 (09) :1397-1408
[10]  
Ashyralyev A., 1994, Operator Theory: Advances and Applications, V69