Liouville-type theorem for the stationary fractional compressible MHD system in anisotropic Lebesgue spaces

被引:0
作者
Pei, Wenda [1 ]
Zeng, Yong [1 ]
机构
[1] Chongqing Technol & Business Univ, Sch Math & Stat, Chongqing 400067, Peoples R China
来源
ELECTRONIC RESEARCH ARCHIVE | 2025年 / 33卷 / 03期
基金
中国国家自然科学基金;
关键词
fractional compressible MHD system; Liouville-type theorem; anisotropic Lebesgue spaces; NAVIER-STOKES EQUATIONS;
D O I
10.3934/era.2025058
中图分类号
O1 [数学];
学科分类号
0701 ; 070101 ;
摘要
This paper is devoted to the study of the Liouville-type theorem of the stationary fractional compressible MHD systems in anisotropic Lebesgue spaces in R3. We showed that the solution is trivial when certain anisotropic integrability conditions are satisfied in terms of the velocity and the magnetic field components.
引用
收藏
页码:1306 / 1322
页数:17
相关论文
共 45 条
[1]  
Bahouri H., 2011, GRUNDLEHREN MATH WIS, P343
[2]   SPACES LP, WITH MIXED NORM [J].
BENEDEK, A ;
PANZONE, R .
DUKE MATHEMATICAL JOURNAL, 1961, 28 (03) :301-&
[3]   An extension problem related to the fractional Laplacian [J].
Caffarelli, Luis ;
Silvestre, Luis .
COMMUNICATIONS IN PARTIAL DIFFERENTIAL EQUATIONS, 2007, 32 (7-9) :1245-1260
[4]   Anisotropic Liouville type theorem for the MHD system in Rn [J].
Chae, Dongho .
JOURNAL OF MATHEMATICAL PHYSICS, 2023, 64 (12)
[5]   Anisotropic Liouville type theorem for the stationary Navier-Stokes equations in R3 [J].
Chae, Dongho .
APPLIED MATHEMATICS LETTERS, 2023, 142
[6]  
Chae D, 2022, Z ANGEW MATH PHYS, V73, DOI 10.1007/s00033-022-01701-3
[7]   On Liouville type theorems for the stationary MHD and Hall-MHD systems [J].
Chae, Dongho ;
Wolf, Jorg .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2021, 295 :233-248
[8]   Relative Decay Conditions on Liouville Type Theorem for the Steady Navier-Stokes System [J].
Chae, Dongho .
JOURNAL OF MATHEMATICAL FLUID MECHANICS, 2021, 23 (01)
[9]   Note on the Liouville type problem for the stationary Navier-Stokes equations in R3 [J].
Chae, Dongho .
JOURNAL OF DIFFERENTIAL EQUATIONS, 2020, 268 (03) :1043-1049
[10]   On Liouville type theorem for the stationary Navier-Stokes equations [J].
Chae, Dongho ;
Wolf, Jorg .
CALCULUS OF VARIATIONS AND PARTIAL DIFFERENTIAL EQUATIONS, 2019, 58 (03)