Spatial prediction of immunity gaps during a pandemic to inform decision making: A geostatistical case study of COVID-19 in Dominican Republic

被引:0
作者
Restrepo, Angela Cadavid [1 ]
Martin, Beatris Mario [2 ]
Mayfield, Helen J. [2 ]
Paulino, Cecilia Then [3 ]
de St. Aubin, Michael [4 ,5 ]
Duke, William [6 ]
Jarolim, Petr [4 ,7 ]
Oasan, Timothy [4 ,7 ]
Gutierrez, Emily Zielinski [8 ]
Ramm, Ronald Skewes [3 ]
Dumas, Devan [4 ,5 ]
Garnier, Salome [4 ,5 ]
Etienne, Marie Caroline [4 ]
Pena, Farah [3 ]
Abdalla, Gabriela [4 ]
Lopez, Beatriz [8 ]
de la Cruz, Lucia [3 ]
Henriquez, Bernarda [3 ]
Baldwin, Margaret [4 ,5 ]
Kucharski, Adam [9 ]
Sartorius, Benn [2 ]
Nilles, Eric J. [4 ,5 ,7 ]
Lau, Colleen L. [2 ]
机构
[1] Univ Queensland, Fac Med, Sch Publ Hlth, Brisbane, Australia
[2] Univ Queensland, Fac Med, UQ Ctr Clin Res, Brisbane, Australia
[3] Minist Hlth & Social Assistance, Santo Domingo, Dominican Rep
[4] Brigham & Womens Hosp, Div Global Emergency Care & Humanitarian Studies, Boston, MA USA
[5] Harvard Humanitarian Initiat, Cambridge, MA USA
[6] Pedro Henriquez Urena Natl Univ, Fac Hlth Sci, Santo Domingo, Dominican Rep
[7] Harvard Univ, Harvard Med Sch, Boston, MA USA
[8] Cent Amer Reg Off, Ctr Dis Control & Prevent, Guatemala City, Guatemala
[9] London Sch Hyg & Trop Med, Ctr Math Modelling Infect Dis, London, England
基金
英国医学研究理事会;
关键词
COVID-19; immunity against SARS-CoV-2; model-based geostatistics; pandemic; predictive mapping; spatial analysis; INFECTION;
D O I
10.1111/tmi.14094
中图分类号
R1 [预防医学、卫生学];
学科分类号
1004 ; 120402 ;
摘要
BackgroundTo demonstrate the application and utility of geostatistical modelling to provide comprehensive high-resolution understanding of the population's protective immunity during a pandemic and identify pockets with sub-optimal protection.MethodsUsing data from a national cross-sectional household survey of 6620 individuals in the Dominican Republic (DR) from June to October 2021, we developed and applied geostatistical regression models to estimate and predict Severe Acute Respiratory Syndrome Coronavirus 2 (SARS-CoV-2) spike (anti-S) antibodies (Ab) seroprevalence at high resolution (1 km) across heterogeneous areas.ResultsSpatial patterns in population immunity to SARS-CoV-2 varied across the DR. In urban areas, a one-unit increase in the number of primary healthcare units per population and 1% increase in the proportion of the population aged under 20 years were associated with higher odds ratios of being anti-S Ab positive of 1.38 (95% confidence interval [CI]: 1.35-1.39) and 1.35 (95% CI: 1.32-1.33), respectively. In rural areas, higher odds of anti-S Ab positivity, 1.45 (95% CI: 1.39-1.51), were observed with increasing temperature in the hottest month (per degrees C), and 1.51 (95% CI: 1.43-1.60) with increasing precipitation in the wettest month (per mm).ConclusionsA geostatistical model that integrates contextually important socioeconomic and environmental factors can be used to create robust and reliable predictive maps of immune protection during a pandemic at high spatial resolution and will assist in the identification of highly vulnerable areas.
引用
收藏
页码:382 / 392
页数:11
相关论文
共 27 条
[1]  
[Anonymous], 2021, Urban population
[2]  
[Anonymous], 2020, R LANG ENV STAT COMP
[3]  
Bastos LS., 2022, LANCET REG HEALTH-AM, V14, P20
[4]   Higher incidence of novel coronavirus (COVID-19) cases in areas with combined sewer systems, heavy precipitation, and high percentages of impervious surfaces [J].
Chan, Alisha Yee ;
Kim, Honghyok ;
Bell, Michelle L. .
SCIENCE OF THE TOTAL ENVIRONMENT, 2022, 820
[5]  
Charles P., 2013, COVID19 GITHUB REPOS
[6]  
Consejo Nacional de Asuntos Urbanos Universidad Autonoma de Santo Domingo Programa de las Naciones Unidas para el Medio Ambiente, 2007, INFORME GEO REPBLICA
[7]   Association Between Vaccination Coverage Disparity and the Dynamics of the COVID-19 Delta and Omicron Waves in the US [J].
Cuadros, Diego F. ;
Moreno, Claudia M. ;
Musuka, Godfrey ;
Miller, F. DeWolfe ;
Coule, Phillip ;
MacKinnon, Neil J. .
FRONTIERS IN MEDICINE, 2022, 9
[8]   Bayesian geostatistical design [J].
Diggle, P ;
Lophaven, S .
SCANDINAVIAN JOURNAL OF STATISTICS, 2006, 33 (01) :53-64
[9]  
ESRI: Environmental Systems Research Institute, 2019, ARCGIS SOFTWARE VERS
[10]   Impact of environmental factors on COVID-19 transmission: spatial variations in the world [J].
Faruk, Mohammad Omar ;
Rana, Md Shohel ;
Jannat, Sumiya Nur ;
Lisa, Fariha Khanam ;
Rahman, Md Sahidur .
INTERNATIONAL JOURNAL OF ENVIRONMENTAL HEALTH RESEARCH, 2023, 33 (09) :864-880