Utilizing decavanadate as an artificial solid electrolyte interface to effectively suppress dendrite formation on a lithium metal anode

被引:0
作者
Song, Jian [1 ,2 ]
Jiang, Yuanyuan [1 ]
Lu, Yizhong [1 ]
Zhao, Changhao [1 ]
Cao, Yundong [1 ]
Fan, Linlin [1 ]
Liu, Hong [1 ]
Gao, Guanggang [1 ]
机构
[1] Univ Jinan, Sch Mat Sci & Engn, Jinan 250022, Peoples R China
[2] Linyi Vocat Univ Sci & Technol, Linyi 276025, Peoples R China
来源
INORGANIC CHEMISTRY FRONTIERS | 2025年 / 12卷 / 05期
基金
中国国家自然科学基金;
关键词
BATTERIES; ENERGY; GROWTH;
D O I
10.1039/d4qi03139c
中图分类号
O61 [无机化学];
学科分类号
070301 ; 081704 ;
摘要
For lithium metal batteries (LMBs), the intrinsic issues of lithium dendrites and an unstable interface between the lithium metal anode and electrolyte pose severe safety risks. In this study, a novel strategy is proposed for modifying the lithium surface using the decavanadate Na6V10O28<middle dot>18H2O (V10) as a protective layer. Constructing a V10 artificial solid electrolyte interface (ASEI) protective layer on lithium metal is a simplified and effective strategy for suppressing the growth of lithium dendrites. During the lithium plating/stripping process, V10 reversibly transforms into Lix[V10O28] (x = 6-9), serving as an "ion sponge" to absorb a large amount of lithium ions to compensate for the shortage of lithium ions on the anode surface. Therefore, the electric field strength on the lithium anode surface is adjusted to suppress dendrite growth. Additionally, V10 accelerates the desolvation of lithium ions from solvent clusters, which contributes to the homogeneous migration of lithium ions. Consequently, Li//Li symmetric cells using V10 modified foils exhibit stable cycling for 1200 h under the conditions of a current density of 5 mA cm-2 and an areal capacity of 1 mA h cm-2, with an overpotential of only 110 mV. The assembled Li-S cells demonstrate excellent rate performance, achieving the reversible capacity of 470 mA h g-1 under 5C.
引用
收藏
页码:2070 / 2080
页数:11
相关论文
共 57 条
  • [1] Characterization of decavanadate and decaniobate solutions by Raman spectroscopy
    Aureliano, Manuel
    Ohlin, C. Andre
    Vieira, Michele O.
    Marques, M. Paula M.
    Casey, William H.
    Batista de Carvalho, Luis A. E.
    [J]. DALTON TRANSACTIONS, 2016, 45 (17) : 7391 - 7399
  • [2] Interfaces and Interphases in All-Solid-State Batteries with Inorganic Solid Electrolytes
    Banerjee, Abhik
    Wang, Xuefeng
    Fang, Chengcheng
    Wu, Erik A.
    Meng, Ying Shirley
    [J]. CHEMICAL REVIEWS, 2020, 120 (14) : 6878 - 6933
  • [3] A Polyoxovanadate as an Advanced Electrode Material for Supercapacitors
    Chen, Han-Yi
    Wee, Grace
    Al-Oweini, Rami
    Friedl, Jochen
    Tan, Kim Soon
    Wang, Yuxi
    Wong, Chui Ling
    Kortz, Ulrich
    Stimming, Ulrich
    Srinivasan, Madhavi
    [J]. CHEMPHYSCHEM, 2014, 15 (10) : 2162 - 2169
  • [4] Insight into the interfacial reaction mechanism of FEC and NaF on Na for high performance sodium metal batteries
    Chen, Jinbiao
    Liu, Tianyong
    Chu, Mihai
    Yu, Kaichen
    Xie, Xintai
    Lin, Kaiji
    Cheng, Yifeng
    Zhang, Xin
    Li, Jie
    Shi, Zhicong
    [J]. JOURNAL OF MATERIALS CHEMISTRY A, 2024, 12 (37) : 25222 - 25232
  • [5] Enhancing interfacial stability in solid-state lithium batteries with polymer/garnet solid electrolyte and composite cathode framework
    Chen, Long
    Qiu, Xiaoming
    Bai, Zhiming
    Fan, Li-Zhen
    [J]. JOURNAL OF ENERGY CHEMISTRY, 2021, 52 (52): : 210 - 217
  • [6] Toward Safe Lithium Metal Anode in Rechargeable Batteries: A Review
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Zhang, Qiang
    [J]. CHEMICAL REVIEWS, 2017, 117 (15) : 10403 - 10473
  • [7] A Review of Solid Electrolyte Interphases on Lithium Metal Anode
    Cheng, Xin-Bing
    Zhang, Rui
    Zhao, Chen-Zi
    Wei, Fei
    Zhang, Ji-Guang
    Zhang, Qiang
    [J]. ADVANCED SCIENCE, 2016, 3 (03)
  • [8] Catalytic Chemistry Derived Artificial Solid Electrolyte Interphase for Stable Lithium Metal Anodes Working at 20 mA cm-2 and 20 mAh cm-2
    Cheng, Yifeng
    Wang, Zhijie
    Chen, Jinbiao
    Chen, Yuanmao
    Ke, Xi
    Wu, Duojie
    Zhang, Qing
    Zhu, Yuanmin
    Yang, Xuming
    Gu, Meng
    Guo, Zaiping
    Shi, Zhicong
    [J]. ANGEWANDTE CHEMIE-INTERNATIONAL EDITION, 2023, 62 (30)
  • [9] Opportunities and challenges for a sustainable energy future
    Chu, Steven
    Majumdar, Arun
    [J]. NATURE, 2012, 488 (7411) : 294 - 303
  • [10] Ding JF, 2021, J ENERGY CHEM, V59, P306, DOI [10.1016/j.jechem.2020.11.016, 10.1016/j.jechem.2020.11.0162095-4956/]