SIHENet: Semantic Interaction and Hierarchical Embedding Network for 360° Salient Object Detection

被引:0
|
作者
He, Zhentao [1 ]
Shao, Feng [1 ]
Xie, Zhengxuan [1 ]
Chai, Xiongli [1 ]
Ho, Yo-Sung [2 ]
机构
[1] Ningbo Univ, Fac Informat Sci & Engn, Ningbo 315211, Peoples R China
[2] Gwangju Inst Sci & Technol GIST, Sch Informat & Commun, Gwangju 500712, South Korea
关键词
Feature extraction; Semantics; Image edge detection; Distortion; Object detection; Optical distortion; Image segmentation; Data mining; Deformation; Shape; 360 degrees omnidirectional images; cross-level feature; cross-projection feature; salient object detection (SOD); OMNIDIRECTIONAL IMAGE; NEURAL-NETWORK; MODEL;
D O I
10.1109/TIM.2024.3507047
中图分类号
TM [电工技术]; TN [电子技术、通信技术];
学科分类号
0808 ; 0809 ;
摘要
With the application of panoramic imaging instruments in environmental perception and measurement, 360 degrees salient object detection (SOD) has become a concern. However, how to reduce the serious distortion of 360 degrees images is still an open question. In this article, we fully exploit the intrinsic information complementarity of cross-projection and cross-level features and innovatively propose a semantic interaction and hierarchical embedding network (SIHENet) to realize 360 degrees SOD. In terms of fusion of different projection features, considering that the distortion of cubemap projection (CMP) images is relatively small, we propose a multiscale hierarchical embedding (MSHE) module to establish the context of CMP images and embed equirectangular projection (ERP) images in it to reduce distortion. In terms of cross-level feature fusion, in order to solve the feature dilution problem in feature transfer, we propose a multiprojection semantic interaction (MPSI) module to integrate the high-level information of ERP and CMP images. In order to solve the edge ambiguity problem, we propose a multilevel semantic matching (MLSM) module to enhance the edge information at different levels of ERP image. Extensive experiments on three public 360 degrees datasets demonstrate the competitive performance of the proposed model in comparison to state-of-the-art (SOTA) 360 degrees SOD models.
引用
收藏
页数:15
相关论文
共 50 条
  • [1] Hierarchical Feature Fusion Network for Salient Object Detection
    Li, Xuelong
    Song, Dawei
    Dong, Yongsheng
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 (29) : 9165 - 9175
  • [2] Hierarchical and Interactive Refinement Network for Edge-Preserving Salient Object Detection
    Zhou, Sanping
    Wang, Jinjun
    Wang, Le
    Zhang, Jimuyang
    Wang, Fei
    Huang, Dong
    Zheng, Nanning
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 1 - 14
  • [3] WFNet: A Wider and Finer Network for Salient Object Detection
    Cen, Jun
    Sun, Han
    Chen, Xinyi
    Liu, Ningzhong
    Liang, Dong
    Zhou, Huiyu
    IEEE ACCESS, 2020, 8 : 210418 - 210428
  • [4] Embedding Attention and Residual Network for Accurate Salient Object Detection
    Chen, Shuhan
    Wang, Ben
    Tan, Xiuli
    Hu, Xuelong
    IEEE TRANSACTIONS ON CYBERNETICS, 2020, 50 (05) : 2050 - 2062
  • [5] View-Aware Salient Object Detection for 360° Omnidirectional Image
    Wu, Junjie
    Xia, Changqun
    Yu, Tianshu
    Li, Jia
    IEEE TRANSACTIONS ON MULTIMEDIA, 2023, 25 : 6471 - 6484
  • [6] Decomposition and Completion Network for Salient Object Detection
    Wu, Zhe
    Su, Li
    Huang, Qingming
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 6226 - 6239
  • [7] Hierarchical Alternate Interaction Network for RGB-D Salient Object Detection
    Li, Gongyang
    Liu, Zhi
    Chen, Minyu
    Bai, Zhen
    Lin, Weisi
    Ling, Haibin
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2021, 30 : 3528 - 3542
  • [8] Hierarchical U-Shape Attention Network for Salient Object Detection
    Zhou, Sanping
    Wang, Jinjun
    Zhang, Jimuyang
    Wang, Le
    Huang, Dong
    Du, Shaoyi
    Zheng, Nanning
    IEEE TRANSACTIONS ON IMAGE PROCESSING, 2020, 29 : 8417 - 8428
  • [9] Hierarchical Context Features Embedding for Object Detection
    Qiu, Heqian
    Li, Hongliang
    Wu, Qingbo
    Meng, Fanman
    Xu, Linfeng
    Ngan, King Ngi
    Shi, Hengcan
    IEEE TRANSACTIONS ON MULTIMEDIA, 2020, 22 (12) : 3039 - 3050
  • [10] A Hierarchical Context Embedding Network for Object Detection in Remote Sensing Images
    Zhang, Ke
    Wu, Yulin
    Wang, Jingyu
    Wang, Qi
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2022, 19