A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:1
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; ATTENTION; IDENTIFICATION; AUTOENCODER;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
[41]   Real-time Anomaly Detection with HMOF Feature [J].
Zhu, Huihui ;
Liu, Bin ;
Lu, Yan ;
Li, Weihai ;
Yu, Nenghai .
PROCEEDINGS OF 2018 THE 2ND INTERNATIONAL CONFERENCE ON VIDEO AND IMAGE PROCESSING (ICVIP 2018), 2018, :49-54
[42]   Patch Feature Transformation: An Anomaly Detection Method with Succinct Feature Filtering [J].
Guo, Yaohua ;
Xu, Guoai ;
Yin, Jianping ;
Wang, Siqi .
INTERNATIONAL JOURNAL OF PATTERN RECOGNITION AND ARTIFICIAL INTELLIGENCE, 2025, 39 (06)
[43]   A Transfer Learning-Based Multimodal Feature Fusion Model for Bearing Fault Diagnosis [J].
Han, Honggui ;
Meng, Yuan ;
Wu, Xiaolong ;
Li, Xin ;
Qiao, Junfei .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[44]   Hybrid Model for Network Traffic Anomaly Detection Based on Parallel Two-Stage Feature Fusion [J].
Ji, Changpeng ;
Liu, Huan ;
Dai, Wei .
IEEE ACCESS, 2025, 13 :27310-27324
[45]   RHCrackNet: Refined Hierarchical Feature Fusion and Enhancement Network for Pixel-Level Pavement Anomaly Detection [J].
Liu, Wenjing ;
Li, Zhenhua ;
Wang, Ji ;
Lu, Qingjie .
BIG DATA MINING AND ANALYTICS, 2025, 8 (04) :880-896
[46]   HARNESSING FEATURE CLUSTERING FOR ENHANCED ANOMALY DETECTION WITH VARIATIONAL AUTOENCODER AND DYNAMIC THRESHOLD [J].
Ale, Tolulope ;
Janeja, Vandana P. ;
Schlegel, Nicole-Jeanne .
2024 IEEE INTERNATIONAL GEOSCIENCE AND REMOTE SENSING SYMPOSIUM (IGARSS 2024), 2024, :8692-8696
[47]   Feature Extraction-Based Anomaly Detection on Time-Series Data [J].
Seo, Hogeon ;
Song, Junyoung ;
Jo, Woojin ;
Seo, Seok-Jun .
JOURNAL OF THE KOREAN SOCIETY FOR NONDESTRUCTIVE TESTING, 2024, 44 (01) :24-29
[48]   Unified Model Based on Reinforced Feature Reconstruction for Metro Track Anomaly Detection [J].
Duan, Mengfei ;
Mao, Liang ;
Liu, Ruikang ;
Liu, Weiming ;
Liu, Zhongbin .
IEEE SENSORS JOURNAL, 2024, 24 (04) :5025-5038
[49]   Multimodal feature fusion for concreteness estimation [J].
Incitti, Francesca ;
Snidaro, Lauro .
2022 25TH INTERNATIONAL CONFERENCE ON INFORMATION FUSION (FUSION 2022), 2022,
[50]   Feature Adaptation and Multi-scale Attentional Fusion Based Anomaly Detection Method [J].
Zhang, Hanyuan ;
Hao, Yingguang ;
Wang, Hongyu .
2024 14TH ASIAN CONTROL CONFERENCE, ASCC 2024, 2024, :1518-1523