A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:1
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; ATTENTION; IDENTIFICATION; AUTOENCODER;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
[31]   Bidirectional Feature Pyramid Siamese Anomaly Detection Network With Cellular Anomaly Generation for Container Marking [J].
Zhai, Yikui ;
Pan, Wenfeng ;
Liang, Yanyang ;
Zhu, Hufei ;
Long, Zhihao ;
Coscia, Pasquale ;
Genovese, Angelo ;
Piuri, Vincenzo ;
Scotti, Fabio .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[32]   Responsible Workload Sequence Anomaly Detection with Bi-View Feature Fusion [J].
Liu, Chunhong ;
Wang, Dehao ;
Duan, Li ;
Wang, Kun ;
Zhang, Junna .
JOURNAL OF NETWORK AND SYSTEMS MANAGEMENT, 2025, 33 (03)
[33]   MFFN: Multiscale Feature Fusion Network with Pruning for photovoltaic cell anomaly detection [J].
He, Zijian ;
Chen, Genyuan ;
Ruan, Zhichao ;
Wang, Lingling .
NONDESTRUCTIVE TESTING AND EVALUATION, 2025,
[34]   Acoustic Feature Extraction and Classification Techniques for Anomaly Sound Detection in the Electronic Motor of Automotive EPS [J].
Yun, Eunsun ;
Jeong, Minjoong .
IEEE ACCESS, 2024, 12 :149288-149307
[35]   Feature Consistency Learning for Anomaly Detection [J].
Li, Huimin ;
Hu, Junlin .
IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
[36]   Sequential Feature Explanations for Anomaly Detection [J].
Siddiqui, Md Amran ;
Fern, Alan ;
Dietterich, Thomas G. ;
Wong, Weng-Keen .
ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2019, 13 (01)
[37]   A feature space analysis for anomaly detection [J].
Jin, SY ;
Yeung, DS ;
Wang, XZ ;
Tsang, ECC .
INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, :3599-3603
[38]   Feature Reconstruction With Disruption for Unsupervised Video Anomaly Detection [J].
Tao, Chenchen ;
Wang, Chong ;
Lin, Sunqi ;
Cai, Suhang ;
Li, Di ;
Qian, Jiangbo .
IEEE TRANSACTIONS ON MULTIMEDIA, 2024, 26 :10160-10173
[39]   Similarity Based Feature Transformation for Network Anomaly Detection [J].
Nagaraja, Arun ;
Boregowda, Uma ;
Khatatneh, Khalaf ;
Vangipuram, Radhakrishna ;
Rajasekhar, Nuvvusetty ;
Kiran, V. Sravan .
IEEE ACCESS, 2020, 8 (08) :39184-39196
[40]   Feature Bank-Guided Reconstruction for Anomaly Detection [J].
He, Sihan ;
Zhang, Tao ;
Song, Wei ;
Yu, Hongbin .
IEEE SIGNAL PROCESSING LETTERS, 2025, 32 :1480-1484