A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:1
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; IDENTIFICATION; AUTOENCODER; ATTENTION;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
  • [21] Hierarchical Feature Fusion based Reconstruction Network for Unsupervised Anomaly Detection
    Zhao, Binjie
    Nie, Jiahao
    Guan, Siwei
    Wang, Han
    He, Zhiwei
    Gao, Mingyu
    2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
  • [22] Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion
    Yadang C.
    Liuren C.
    Wenbin Y.
    Jiale Z.
    Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10): : 1542 - 1549
  • [23] Multisource Multimodal Feature Fusion for Small Leak Detection in Gas Pipelines
    Yan, Wendi
    Liu, Wei
    Zhang, Qiao
    Bi, Hongbo
    Jiang, Chunlei
    Liu, Haixu
    Wang, Tao
    Dong, Taiji
    Ye, Xiaohui
    IEEE SENSORS JOURNAL, 2024, 24 (02) : 1857 - 1865
  • [24] Expect the Unexpected: Unsupervised Feature Selection for Automated Sensor Anomaly Detection
    Teh, Hui Yie
    Wang, Kevin I-Kai
    Kempa-Liehr, Andreas W.
    IEEE SENSORS JOURNAL, 2021, 21 (16) : 18033 - 18046
  • [25] Bidirectional Feature Pyramid Siamese Anomaly Detection Network With Cellular Anomaly Generation for Container Marking
    Zhai, Yikui
    Pan, Wenfeng
    Liang, Yanyang
    Zhu, Hufei
    Long, Zhihao
    Coscia, Pasquale
    Genovese, Angelo
    Piuri, Vincenzo
    Scotti, Fabio
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [26] Responsible Workload Sequence Anomaly Detection with Bi-View Feature Fusion
    Chunhong Liu
    Dehao Wang
    Li Duan
    Kun Wang
    Junna Zhang
    Journal of Network and Systems Management, 2025, 33 (3)
  • [27] Acoustic Feature Extraction and Classification Techniques for Anomaly Sound Detection in the Electronic Motor of Automotive EPS
    Yun, Eunsun
    Jeong, Minjoong
    IEEE ACCESS, 2024, 12 : 149288 - 149307
  • [28] Feature Consistency Learning for Anomaly Detection
    Li, Huimin
    Hu, Junlin
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2025, 74
  • [29] Sequential Feature Explanations for Anomaly Detection
    Siddiqui, Md Amran
    Fern, Alan
    Dietterich, Thomas G.
    Wong, Weng-Keen
    ACM TRANSACTIONS ON KNOWLEDGE DISCOVERY FROM DATA, 2019, 13 (01)
  • [30] A feature space analysis for anomaly detection
    Jin, SY
    Yeung, DS
    Wang, XZ
    Tsang, ECC
    INTERNATIONAL CONFERENCE ON SYSTEMS, MAN AND CYBERNETICS, VOL 1-4, PROCEEDINGS, 2005, : 3599 - 3603