A Coattention Enhanced Multimodal Feature Fusion With Inner Feature for Anomaly Detection

被引:1
作者
Zhang, Danwei [1 ]
Sun, Hongshuo [1 ]
Yu, Wen [2 ]
Xu, Quan [1 ]
Chai, Tianyou [1 ]
机构
[1] Northeastern Univ, State Key Lab Synthet Automat Proc Ind, Shenyang 110000, Peoples R China
[2] Natl Polytech Inst CINVESTAV IPN, Ctr Res & Adv Studies, Dept Control Automat, Mexico City 07360, Mexico
基金
中国国家自然科学基金;
关键词
Feature extraction; Vibrations; Data models; Anomaly detection; Vectors; Spatiotemporal phenomena; Industries; Decoding; Minerals; Materials processing; Autoregressive (AR) network integration; anomaly detection; coattention; coarse-fine-grained fusion; dynamic inner feature fusion; FAULT-DIAGNOSIS; ATTENTION; IDENTIFICATION; AUTOENCODER;
D O I
10.1109/TMECH.2024.3491172
中图分类号
TP [自动化技术、计算机技术];
学科分类号
0812 ;
摘要
Current anomaly detection methods struggle with the nonlinear, dynamic, and multisource nature of industrial processes. This article proposes a novel end-to-end architecture with multimodal data dynamic inner feature fusion for anomaly detection in high-pressure grinding rolls (HPGRs). We employ a dual spatiotemporal autoencoder (AE) to extract features from both production process data and vibration signals. A coattention mechanism and a coarse-fine-grained feature fusion module enhance the model's ability to capture multimodal feature interactions and recover lost manifold information. An embedded autoregressive network module extracts consistent dynamic feature representations, further improving the AE's ability for interactive multimodal feature fusion. Finally, we propose a new dynamic inner feature fusion anomaly detection method specifically designed for nonlinear dynamic processes with multimodal data. The effectiveness of the proposed method is validated using real-world HPGR production process data.
引用
收藏
页数:11
相关论文
共 50 条
[21]   Weakly Aligned Feature Fusion for Multimodal Object Detection [J].
Zhang, Lu ;
Liu, Zhiyong ;
Zhu, Xiangyu ;
Song, Zhan ;
Yang, Xu ;
Lei, Zhen ;
Qiao, Hong .
IEEE TRANSACTIONS ON NEURAL NETWORKS AND LEARNING SYSTEMS, 2025, 36 (03) :4145-4159
[22]   Anomaly Detection of GAN Industrial Image Based on Attention Feature Fusion [J].
Zhang, Lin ;
Dai, Yang ;
Fan, Fuyou ;
He, Chunlin .
SENSORS, 2023, 23 (01)
[23]   Hierarchical Feature Fusion based Reconstruction Network for Unsupervised Anomaly Detection [J].
Zhao, Binjie ;
Nie, Jiahao ;
Guan, Siwei ;
Wang, Han ;
He, Zhiwei ;
Gao, Mingyu .
2022 IEEE 27TH INTERNATIONAL CONFERENCE ON EMERGING TECHNOLOGIES AND FACTORY AUTOMATION (ETFA), 2022,
[24]   IoVST: An anomaly detection method for IoV based on spatiotemporal feature fusion [J].
Cao, Jinhui ;
Di, Xiaoqiang ;
Li, Jinqing ;
Yu, Keping ;
Zhao, Liang .
FUTURE GENERATION COMPUTER SYSTEMS-THE INTERNATIONAL JOURNAL OF ESCIENCE, 2025, 166
[25]   Data and Feature Fusion Approaches for Anomaly Detection in Polarimetric Hyperspectral Imagery [J].
Bihl, Trevor J. ;
Martin, Jacob A. ;
Gross, Kevin C. ;
Bauer, Kenneth W. .
PROCEEDINGS OF THE 2021 IEEE NATIONAL AEROSPACE AND ELECTRONICS CONFERENCE (NAECON), 2021, :157-163
[26]   Knowledge Distillation Anomaly Detection with Multi-Scale Feature Fusion [J].
Yadang C. ;
Liuren C. ;
Wenbin Y. ;
Jiale Z. .
Jisuanji Fuzhu Sheji Yu Tuxingxue Xuebao/Journal of Computer-Aided Design and Computer Graphics, 2022, 34 (10) :1542-1549
[27]   Multisource Multimodal Feature Fusion for Small Leak Detection in Gas Pipelines [J].
Yan, Wendi ;
Liu, Wei ;
Zhang, Qiao ;
Bi, Hongbo ;
Jiang, Chunlei ;
Liu, Haixu ;
Wang, Tao ;
Dong, Taiji ;
Ye, Xiaohui .
IEEE SENSORS JOURNAL, 2024, 24 (02) :1857-1865
[28]   Hyperbolic geometry enhanced feature filtering network for industrial anomaly detection [J].
Feng, Yanjun ;
Liu, Jun ;
Gai, Yonggang .
SCIENTIFIC REPORTS, 2025, 15 (01)
[29]   Expect the Unexpected: Unsupervised Feature Selection for Automated Sensor Anomaly Detection [J].
Teh, Hui Yie ;
Wang, Kevin I-Kai ;
Kempa-Liehr, Andreas W. .
IEEE SENSORS JOURNAL, 2021, 21 (16) :18033-18046
[30]   Retrieving and Reasoning: Multivariate Feature and Attribute Cooperation for Video Anomaly Detection [J].
Han, Xingshuo ;
Wang, Xiao ;
Liu, Wei ;
Ye, Liping ;
Xu, Xin .
IEEE SIGNAL PROCESSING LETTERS, 2025, 32 :1595-1599