DECENTRALIZED CONDITION MONITORING FOR DISTRIBUTED WIND SYSTEMS: A FEDERATED LEARNING-BASED APPROACH TO ENHANCE SCADA DATA PRIVACY

被引:0
作者
Li, Gang [1 ]
Wu, Yusen [2 ]
Yesha, Yelena [2 ]
机构
[1] Mississippi State Univ, Michael W Hall Sch Mech Engn, Starkville, MS 39762 USA
[2] Univ Miami, Frost Inst Data Sci & Comp, Miami, FL USA
来源
PROCEEDINGS OF ASME 2024 18TH INTERNATIONAL CONFERENCE ON ENERGY SUSTAINABILITY, ES2024 | 2024年
基金
美国国家科学基金会;
关键词
Distributed wind systems; SCADA; Federated learning; Data privacy;
D O I
暂无
中图分类号
X [环境科学、安全科学];
学科分类号
08 ; 0830 ;
摘要
The paper presents a new condition monitoring method for distributed wind systems (DWSs) by combining federated learning with supervisory control and data acquisition (SCADA) data. Federated learning facilitates training of a global model across decentralized SCADA datasets without actual data exchange. This method allows multiple DWSs to collectively contribute to training machine learning models without compromising data privacy. The framework aims to enhance the accuracy and efficiency of condition monitoring by leveraging operational data from SCADA systems. It enables collaborative learning across diverse geographical areas, identifying subtle patterns and anomalies indicative of potential faults or performance issues. The integration of SCADA data provides real-time insights into individual turbine health and performance, allowing for early detection of deviations from normal operating conditions. The federated learning model evolves to adapt to changing environmental and operational factors while maintaining data confidentiality. This condition monitoring method allows for collective improvement of monitoring models without exposing sensitive turbine-specific information, enhancing security and transparency. The synergy of federated learning and SCADA data represents a pioneering paradigm shift, promising to improve monitoring processes and knowledge sharing within the wind infrastructure, advancing reliability, performance, and sustainability in the face of operational challenges.
引用
收藏
页数:8
相关论文
共 19 条
[1]  
Culler Megan Jordan, 2021, Technical report, DOI [10.2172/1823119, DOI 10.2172/1823119]
[2]  
Ding Guanyu, 2022, Cloud Computing - CLOUD 2022: 15th International Conference, Held as Part of the Services Conference Federation, SCF 2022, Proceedings. Lecture Notes in Computer Science (13731), P13, DOI 10.1007/978-3-031-23498-9_2
[3]   Rural wind farm development: Social, environmental and economic features important to local residents [J].
Groth, Theresa M. ;
Vogt, Christine A. .
RENEWABLE ENERGY, 2014, 63 :1-8
[4]  
Homer Juliet S, 2018, Technical report
[5]  
Homer Juliet S, 2021, Technical report
[6]   Advances and Open Problems in Federated Learning [J].
Kairouz, Peter ;
McMahan, H. Brendan ;
Avent, Brendan ;
Bellet, Aurelien ;
Bennis, Mehdi ;
Bhagoji, Arjun Nitin ;
Bonawitz, Kallista ;
Charles, Zachary ;
Cormode, Graham ;
Cummings, Rachel ;
D'Oliveira, Rafael G. L. ;
Eichner, Hubert ;
El Rouayheb, Salim ;
Evans, David ;
Gardner, Josh ;
Garrett, Zachary ;
Gascon, Adria ;
Ghazi, Badih ;
Gibbons, Phillip B. ;
Gruteser, Marco ;
Harchaoui, Zaid ;
He, Chaoyang ;
He, Lie ;
Huo, Zhouyuan ;
Hutchinson, Ben ;
Hsu, Justin ;
Jaggi, Martin ;
Javidi, Tara ;
Joshi, Gauri ;
Khodak, Mikhail ;
Konecny, Jakub ;
Korolova, Aleksandra ;
Koushanfar, Farinaz ;
Koyejo, Sanmi ;
Lepoint, Tancrede ;
Liu, Yang ;
Mittal, Prateek ;
Mohri, Mehryar ;
Nock, Richard ;
Ozgur, Ayfer ;
Pagh, Rasmus ;
Qi, Hang ;
Ramage, Daniel ;
Raskar, Ramesh ;
Raykova, Mariana ;
Song, Dawn ;
Song, Weikang ;
Stich, Sebastian U. ;
Sun, Ziteng ;
Suresh, Ananda Theertha .
FOUNDATIONS AND TRENDS IN MACHINE LEARNING, 2021, 14 (1-2) :1-210
[7]  
Konečny J, 2016, Arxiv, DOI [arXiv:1610.02527, DOI 10.48550/ARXIV.1610.02527]
[8]   Wind farms in rural areas: How far do community benefits from wind farms represent a local economic development opportunity? [J].
Munday, Max ;
Bristow, Gill ;
Cowell, Richard .
JOURNAL OF RURAL STUDIES, 2011, 27 (01) :1-12
[9]   SCADA (Supervisory Control and Data Acquisition) systems: Vulnerability assessment and security recommendations [J].
Upadhyay, Darshana ;
Sampalli, Srinivas .
COMPUTERS & SECURITY, 2020, 89
[10]   Grand challenges in the science of wind energy [J].
Veers, Paul ;
Dykes, Katherine ;
Lantz, Eric ;
Barth, Stephan ;
Bottasso, Carlo L. ;
Carlson, Ola ;
Clifton, Andrew ;
Green, Johney ;
Green, Peter ;
Holttinen, Hannele ;
Laird, Daniel ;
Lehtomaki, Ville ;
Lundquist, Julie K. ;
Manwell, James ;
Marquis, Melinda ;
Meneveau, Charles ;
Moriarty, Patrick ;
Munduate, Xabier ;
Muskulus, Michael ;
Naughton, Jonathan ;
Pao, Lucy ;
Paquette, Joshua ;
Peinke, Joachim ;
Robertson, Amy ;
Sanz Rodrigo, Javier ;
Sempreviva, Anna Maria ;
Smith, J. Charles ;
Tuohy, Aidan ;
Wiser, Ryan .
SCIENCE, 2019, 366 (6464) :443-+