Bifunctional group additives induce solvent-based structural reconfiguration of electrolytes for high-performance lithium-metal batteries

被引:0
作者
You, Jiyuan [1 ]
Deng, Liwei [1 ]
Meng, Shaoliang [1 ]
Li, Yuqian [1 ]
Liu, Liyang [2 ]
Wang, Wenju [1 ]
机构
[1] Nanjing Univ Sci & Technol, Sch Energy & Power Engn, Nanjing 210094, Jiangsu, Peoples R China
[2] Nanjing Vocat Univ Ind Technol, Sch Comp & Software Engn, Nanjing 210023, Peoples R China
基金
中国国家自然科学基金;
关键词
Lithium-metal batteries; Lithium dendrite; In-situ optical visualization; Stabilized SEI layer; Electrolyte simulation; HOMO; LUMO; SUPPRESSION; SOLVATION; CARBONATE; DENDRITE; PROGRESS; LITFSI; GROWTH;
D O I
10.1016/j.electacta.2025.145720
中图分类号
O646 [电化学、电解、磁化学];
学科分类号
081704 ;
摘要
The lithium-metal batteries (LMBs) have attracted attention due to high energy density and wide application prospects. However, issues such as the uncontrolled growth of lithium dendrites on the lithium metal surface and the instability of the solid electrolyte interphase pose safety hazards to LMBs. In this study, we addressed these challenges by adding Propargyl methanesulfonate (PMS) to the electrolyte, which led to the reconstruction of the solvation structure of Li+. PMS facilitates the formation of a smooth and stable solid electrolyte interface on the Li anode surface, suppressing the uncontrolled growth of dendrites. Additionally, the observation of dendrite growth is conducted using in-situ optical microscopy. Furthermore, PMS decomposes on the Li anode to form sulfur-containing compounds, promoting the shuttle of Li+ and enhancing the cycling stability of the cell. The assembly of a Li/LiNi0.8Co0.1Mn0.1O2 full cell is used to validate further that adding PMS enables stable and reversible cycling of LMBs.
引用
收藏
页数:9
相关论文
共 58 条
[1]   Lithium Batteries and the Solid Electrolyte Interphase (SEI)-Progress and Outlook [J].
Adenusi, Henry ;
Chass, Gregory A. ;
Passerini, Stefano ;
Tian, Kun V. ;
Chen, Guanhua .
ADVANCED ENERGY MATERIALS, 2023, 13 (10)
[2]   Development of many-body polarizable force fields for Li-battery applications: 2. LiTFSI-doped oligoether, polyether, and carbonate-based electrolytes [J].
Borodin, O ;
Smith, GD .
JOURNAL OF PHYSICAL CHEMISTRY B, 2006, 110 (12) :6293-6299
[3]   Lithium Dendrite in All-Solid-State Batteries: Growth Mechanisms, Suppression Strategies, and Characterizations [J].
Cao, Daxian ;
Sun, Xiao ;
Li, Qiang ;
Natan, Avi ;
Xiang, Pengyang ;
Zhu, Hongli .
MATTER, 2020, 3 (01) :57-94
[4]  
Ding JF, 2021, J ENERGY CHEM, V59, P306, DOI [10.1016/j.jechem.2020.11.0162095-4956/, 10.1016/j.jechem.2020.11.016]
[5]   Guidelines to design organic electrolytes for lithium-ion batteries: environmental impact, physicochemical and electrochemical properties [J].
Flamme, Benjamin ;
Garcia, Gonzalo Rodriguez ;
Weil, Marcel ;
Haddad, Mansour ;
Phansavath, Phannarath ;
Ratovelomanana-Vidal, Virginie ;
Chagnes, Alexandre .
GREEN CHEMISTRY, 2017, 19 (08) :1828-1849
[6]  
Gao ZH, 2018, ADV MATER, V30, DOI [10.1002/adma.201870122, 10.1002/adma.201705702]
[7]   Electrolyte additives for lithium ion battery electrodes: progress and perspectives [J].
Haregewoin, Atetegeb Meazah ;
Wotango, Aselefech Sorsa ;
Hwang, Bing-Joe .
ENERGY & ENVIRONMENTAL SCIENCE, 2016, 9 (06) :1955-1988
[8]   Cyclic Voltammetry in Lithium-Sulfur Batteries-Challenges and Opportunities [J].
Huang, Xia ;
Wang, Zhiliang ;
Knibbe, Ruth ;
Luo, Bin ;
Ahad, Syed Abdul ;
Sun, Dan ;
Wang, Lianzhou .
ENERGY TECHNOLOGY, 2019, 7 (08)
[9]   Electrochemomechanics of lithium dendrite growth [J].
Jana, Aniruddha ;
Woo, Sang Inn ;
Vikrant, K. S. N. ;
Garcia, R. Edwin .
ENERGY & ENVIRONMENTAL SCIENCE, 2019, 12 (12) :3595-3607
[10]   Energy Level Modulation of HOMO, LUMO, and Band-Gap in Conjugated Polymers for Organic Photovoltaic Applications [J].
Kim, Bong-Gi ;
Ma, Xiao ;
Chen, Chelsea ;
Ie, Yutaka ;
Coir, Elizabeth W. ;
Hashemi, Hossein ;
Aso, Yoshio ;
Green, Peter F. ;
Kieffer, John ;
Kim, Jinsang .
ADVANCED FUNCTIONAL MATERIALS, 2013, 23 (04) :439-445