Composition design of fullerene-based hybrid electron transport layer for efficient and stable wide-bandgap perovskite solar cells

被引:1
作者
Zeng, Shuai [1 ]
Zhou, Jinpeng [1 ]
Sun, Yuandong [1 ]
Sun, Wei [1 ]
Yang, Liyan [3 ]
Wang, Hui [2 ]
Li, Xiangyang [1 ]
Guo, Hailin [1 ]
Dong, Linfeng [1 ]
Guo, Chuanhang [1 ]
Chen, Zhenghong [1 ]
Li, Wei [1 ]
Liu, Dan [1 ]
Wang, Tao [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Mat & Microelect, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Text Univ, Key Lab Text Fiber & Prod, Minist Educ, Wuhan 430200, Hubei, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2025年 / 102卷
关键词
Perovskite solar cells; Fullerene; Electron transport layer; Composition; HIGH-PERFORMANCE; FILL FACTORS; STABILITY; DERIVATIVES;
D O I
10.1016/j.jechem.2024.10.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) has been routinely used as the electron transport layer (ETL) in perovskite solar cells due to its suitable energy levels and good solution processability. However, its electron mobility and conductivity still need to be further enhanced for constructing high performance perovskite solar cells (PSCs). Herein, by doping the PC61BM with a p-type polymer PM6 and n-type molecule ITIC, efficient wide-bandgap perovskite solar cells with improved efficiency and operational/storage stability are obtained. Further spectroscopy and electric measurements indicate PM6 and ITIC can both passivate defects at the perovskite/ETL interface, meanwhile ITIC can elevate the Fermi level of PC61BM to enhance conductivity and PM6 can improve the photo-induced electron mobility of the ETL, facilitating charge extraction and reducing charge recombination. As the results, Cs0.17FA0.83Pb(I0.83Br0.17)3 wide-bandgap PSCs with PM6:PC61BM:ITIC as the ETL demonstrates a superior efficiency of 22.95%, compared to 20.89% of the PC61BM assisted device. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 50 条
  • [41] Buried organic interlayer for high-performance and stable wide-bandgap perovskite solar cells
    Kim, Haeun
    Lee, Soo Yeon
    Park, Hansol
    Heo, Jihyeon
    Kim, Hakjun
    Kim, Yoonsung
    Prayogo, Juan Anthony
    Kim, Young-Hoon
    Whang, Dong Ryeol
    Chang, Dong Wook
    Park, Hui Joon
    CHEMICAL ENGINEERING JOURNAL, 2025, 509
  • [42] Enhancing Charge Transport of 2D Perovskite Passivation Agent for Wide-Bandgap Perovskite Solar Cells Beyond 21%
    Ye, Jiselle Y.
    Tong, Jinhui
    Hu, Jun
    Xiao, Chuanxiao
    Lu, Haipeng
    Dunfield, Sean P.
    Kim, Dong Hoe
    Chen, Xihan
    Larson, Bryon W.
    Hao, Ji
    Wang, Kang
    Zhao, Qian
    Chen, Zheng
    Hu, Huamin
    You, Wei
    Berry, Joseph J.
    Zhang, Fei
    Zhu, Kai
    SOLAR RRL, 2020, 4 (06)
  • [43] Solution-processed electron transport layer of n-doped fullerene for efficient and stable all carbon based perovskite solar cells
    Zhou, Junshuai
    Hou, Jie
    Tao, Xia
    Meng, Xiangyue
    Yang, Shihe
    JOURNAL OF MATERIALS CHEMISTRY A, 2019, 7 (13) : 7710 - 7716
  • [44] Efficient wide-bandgap perovskite solar cells enabled by doping a bromine-rich molecule
    He, Rui
    Chen, Tingting
    Xuan, Zhipeng
    Guo, Tianzhen
    Luo, Jincheng
    Jiang, Yiting
    Wang, Wenwu
    Zhang, Jingquan
    Hao, Xia
    Wu, Lili
    Wang, Ye
    Constantinou, Iordania
    Ren, Shengqiang
    Zhao, Dewei
    NANOPHOTONICS, 2021, 10 (08) : 2059 - 2068
  • [45] Multilayer Cascade Charge Transport Layer for High-Performance Inverted Mesoscopic All-Inorganic and Hybrid Wide-Bandgap Perovskite Solar Cells
    Chen, Yu
    Tang, Weijian
    Wu, Yihui
    Yuan, Ruihan
    Yang, Jianchao
    Shan, Wenjuan
    Zhang, Shengli
    Zhang, Wen-Hua
    SOLAR RRL, 2020, 4 (10):
  • [46] Efficient and stable planar perovskite solar cells using co-doped tin oxide as the electron transport layer
    Sakthivel, P.
    Foo, Shini
    Thambidurai, M.
    Harikesh, P. C.
    Mathews, Nripan
    Yuvakkumar, R.
    Ravi, G.
    Dang, Cuong
    JOURNAL OF POWER SOURCES, 2020, 471
  • [47] Matching Charge Extraction Contact for Wide-Bandgap Perovskite Solar Cells
    Lin, Yuze
    Chen, Bo
    Zhao, Fuwen
    Zheng, Xiaopeng
    Deng, Yehao
    Shao, Yuchuan
    Fang, Yanjun
    Bai, Yang
    Wang, Chunru
    Huang, Jinsong
    ADVANCED MATERIALS, 2017, 29 (26)
  • [48] Role of fullerene electron transport layer on the morphology and optoelectronic properties of perovskite solar cells
    Upama, Mushfika Baishakhi
    Elumalai, Naveen Kumar
    Mahmud, Md Arafat
    Wang, Dian
    Haque, Faiazul
    Goncales, Vinicius R.
    Gooding, J. Justin
    Wright, Matthew
    Xu, Cheng
    Uddin, Ashraf
    ORGANIC ELECTRONICS, 2017, 50 : 279 - 289
  • [49] Double electron transport layers for efficient and stable organic-inorganic hybrid perovskite solar cells
    Ren, Caixia
    He, Yue
    Li, Shiqi
    Sun, Qinjun
    Liu, Yifan
    Wu, Yukun
    Cui, Yanxia
    Li, Zhanfeng
    Wang, Hua
    Hao, Yuying
    Wu, Yucheng
    ORGANIC ELECTRONICS, 2019, 70 : 292 - 299
  • [50] Advances in Single-Halogen Wide-Bandgap Perovskite Solar Cells
    Nie, Ting
    Jia, Lingbo
    Feng, Jiangshan
    Yang, Shangfeng
    Ding, Jianning
    Liu, Shengzhong
    Fang, Zhimin
    ADVANCED FUNCTIONAL MATERIALS, 2025, 35 (09)