Composition design of fullerene-based hybrid electron transport layer for efficient and stable wide-bandgap perovskite solar cells

被引:1
|
作者
Zeng, Shuai [1 ]
Zhou, Jinpeng [1 ]
Sun, Yuandong [1 ]
Sun, Wei [1 ]
Yang, Liyan [3 ]
Wang, Hui [2 ]
Li, Xiangyang [1 ]
Guo, Hailin [1 ]
Dong, Linfeng [1 ]
Guo, Chuanhang [1 ]
Chen, Zhenghong [1 ]
Li, Wei [1 ]
Liu, Dan [1 ]
Wang, Tao [1 ,2 ]
机构
[1] Wuhan Univ Technol, Sch Mat Sci & Engn, Wuhan 430070, Hubei, Peoples R China
[2] Wuhan Univ Technol, Sch Mat & Microelect, Wuhan 430070, Hubei, Peoples R China
[3] Wuhan Text Univ, Key Lab Text Fiber & Prod, Minist Educ, Wuhan 430200, Hubei, Peoples R China
来源
JOURNAL OF ENERGY CHEMISTRY | 2025年 / 102卷
关键词
Perovskite solar cells; Fullerene; Electron transport layer; Composition; HIGH-PERFORMANCE; FILL FACTORS; STABILITY; DERIVATIVES;
D O I
10.1016/j.jechem.2024.10.046
中图分类号
O69 [应用化学];
学科分类号
081704 ;
摘要
Fullerene derivatives [6,6]-phenyl-C61-butyric acid methyl ester (PC61BM) has been routinely used as the electron transport layer (ETL) in perovskite solar cells due to its suitable energy levels and good solution processability. However, its electron mobility and conductivity still need to be further enhanced for constructing high performance perovskite solar cells (PSCs). Herein, by doping the PC61BM with a p-type polymer PM6 and n-type molecule ITIC, efficient wide-bandgap perovskite solar cells with improved efficiency and operational/storage stability are obtained. Further spectroscopy and electric measurements indicate PM6 and ITIC can both passivate defects at the perovskite/ETL interface, meanwhile ITIC can elevate the Fermi level of PC61BM to enhance conductivity and PM6 can improve the photo-induced electron mobility of the ETL, facilitating charge extraction and reducing charge recombination. As the results, Cs0.17FA0.83Pb(I0.83Br0.17)3 wide-bandgap PSCs with PM6:PC61BM:ITIC as the ETL demonstrates a superior efficiency of 22.95%, compared to 20.89% of the PC61BM assisted device. (c) 2024 Science Press and Dalian Institute of Chemical Physics, Chinese Academy of Sciences. Published by Elsevier B.V. and Science Press. All rights are reserved, including those for text and data mining, AI training, and similar technologies.
引用
收藏
页码:172 / 178
页数:7
相关论文
共 50 条
  • [21] Molecular Engineering of the Fullerene-Based Electron Transport Layer Materials for Improving Ambient Stability of Perovskite Solar Cells
    Elnaggar, Mohamed
    Elshobaki, Moneim
    Mumyatov, Alexander
    Luchkin, Sergey Yu
    Dremova, Nadezhda N.
    Stevenson, Keith J.
    Troshin, Pavel A.
    SOLAR RRL, 2019, 3 (09):
  • [22] Modified Fullerenes for Efficient Electron Transport Layer-Free Perovskite/Fullerene Blend-Based Solar Cells
    Sandoval-Torrientes, Rafael
    Pascual, Jorge
    Garcia-Benito, Ines
    Collavini, Silvia
    Kosta, Ivet
    Tena-Zaera, Ramon
    Martin, Nazario
    Luis Delgado, Juan
    CHEMSUSCHEM, 2017, 10 (09) : 2023 - 2029
  • [23] Potassium-Induced Phase Stability Enables Stable and Efficient Wide-Bandgap Perovskite Solar Cells
    Wang, Lipeng
    Wang, Gaoxiang
    Yan, Zheng
    Qiu, Jianhang
    Jia, Chunxu
    Zhang, Weimin
    Zhen, Chao
    Xu, Chuan
    Tai, Kaiping
    Jiang, Xin
    Yang, Shihe
    SOLAR RRL, 2020, 4 (07):
  • [24] Trimethyl Ammonium-Assisted Interfacial Modification for Efficient and Stable Wide-Bandgap Perovskite Solar Cells
    Yi, Fangxuan
    Guo, Qiyao
    He, Wei
    Tang, Qunwei
    Duan, Jialong
    ENERGY TECHNOLOGY, 2024, 12 (01)
  • [25] A Thermally Induced Perovskite Crystal Control Strategy for Efficient and Photostable Wide-Bandgap Perovskite Solar Cells
    Kim, Geunjin
    Moon, Chan Su
    Yang, Tae-Youl
    Kim, Young Yun
    Chung, Jaehoon
    Jung, Eui Hyuk
    Shin, Tae Joo
    Jeon, Nam Joong
    Park, Helen Hejin
    Seo, Jangwon
    SOLAR RRL, 2020, 4 (06)
  • [26] Grain boundary defect passivation by in situ formed wide-bandgap lead sulfate for efficient and stable perovskite solar cells
    Ma, Xiaohui
    Yang, Liqun
    Shang, Xueni
    Li, Mengjia
    Gao, Deyu
    Wu, Cuncun
    Zheng, Shijian
    Zhang, Boxue
    Chen, Jiangzhao
    Chen, Cong
    Song, Hongwei
    CHEMICAL ENGINEERING JOURNAL, 2021, 426
  • [27] Impact of Precursor Concentration on Perovskite Crystallization for Efficient Wide-Bandgap Solar Cells
    Du, Shuxian
    Yang, Jing
    Qu, Shujie
    Lan, Zhineng
    Sun, Tiange
    Dong, Yixin
    Shang, Ziya
    Liu, Dongxue
    Yang, Yingying
    Yan, Luyao
    Wang, Xinxin
    Huang, Hao
    Ji, Jun
    Cui, Peng
    Li, Yingfeng
    Li, Meicheng
    MATERIALS, 2022, 15 (09)
  • [28] Investigation of the Selectivity of Carrier Transport Layers in Wide-Bandgap Perovskite Solar Cells
    Kavadiya, Shalinee
    Onno, Arthur
    Boyd, Caleb C.
    Wang, Xingyi
    Cetta, Alexa
    McGehee, Michael D.
    Holman, Zachary C.
    SOLAR RRL, 2021, 5 (07)
  • [29] Fullerene-Based Materials for Photovoltaic Applications: Toward Efficient, Hysteresis-Free, and Stable Perovskite Solar Cells
    Deng, Lin-Long
    Xie, Su-Yuan
    Gao, Feng
    ADVANCED ELECTRONIC MATERIALS, 2018, 4 (10):
  • [30] Benefits of fullerene/SnO2 bilayers as electron transport layer for efficient planar perovskite solar cells
    Chen, Yun
    Xu, Cong
    Xiong, Jian
    Zhang, Zheling
    Zhang, Xiuyun
    Yang, Junliang
    Xue, Xiaogang
    Yang, Dong
    Zhang, Jian
    ORGANIC ELECTRONICS, 2018, 58 : 294 - 300