Domain-Specific Prediction of Clinical Progression in Parkinson's Disease Using the Mosaic Approach

被引:0
作者
Tahedl, Marlene [1 ]
Bogdahn, Ulrich [2 ]
Wimmer, Bernadette [3 ]
Hedderich, Dennis M. [1 ]
Kirschke, Jan S. [1 ]
Zimmer, Claus [1 ]
Wiestler, Benedikt [1 ]
机构
[1] Tech Univ Munich, Sch Med & Hlth, Dept Neuroradiol, Munich, Germany
[2] Univ Regensburg, Univ Hosp, Sch Med, Dept Neurol, Regensburg, Germany
[3] UNIV INNSBRUCK, Sch Med, Dept Neurol, INNSBRUCK, Austria
关键词
cortical thickness; machine learning; magnetic resonance imaging; Parkinson's disease; personalized medicine; FEATURE-SELECTION; RATING-SCALE; SAMPLE-SIZE; REORGANIZATION; ORGANIZATION; IMPAIRMENT; DISABILITY;
D O I
10.1002/brb3.70289
中图分类号
B84 [心理学]; C [社会科学总论]; Q98 [人类学];
学科分类号
03 ; 0303 ; 030303 ; 04 ; 0402 ;
摘要
Purpose: Due to the highly individualized clinical manifestation of Parkinson's disease (PD), personalized patient care may require domain-specific assessment of neurological disability. Evidence from magnetic resonance imaging (MRI) studies has proposed that heterogenous clinical manifestation corresponds to heterogeneous cortical disease burden, suggesting customized, high-resolution assessment of cortical pathology as a candidate biomarker for domain-specific assessment. Method: Herein, we investigate the potential of the recently proposed Mosaic Approach (MAP), a normative framework for quantifying individual cortical disease burden with respect to a population-representative cohort, in predicting domain-specific clinical progression. Using MRI and clinical data from 135 recently diagnosed PD patients from the Parkinson's Progression Markers Initiative, we first defined an extremity-specific motor score. We then identified cortical regions corresponding to "extremity functions" and restricted MAP, respectively, and contrasted the explanatory power of the extremity-specific MAP to unrestricted MAP. As control conditions, domain-related but less specific general motor function and nondomain-specific cognitive scores were considered. We also tested the predictive power of the restricted MAP in predicting disease progression over 1 and 3 years using support vector machines. The restricted, extremity-specific MAP yielded higher explanatory power for extremity-specific motor function at baseline as opposed to the unrestricted, whole-brain MAP. On the contrary, for general motor function, the unrestricted, whole-brain MAP yielded higher power. Finding: No associations were found for cognitive function. The extremity-specific MAP predicted extremity-specific motor progression over 1 and 3 years above chance level. The MAP framework allows for domain-specific prediction of customized PD disease progression, which can inform machine learning, thereby contributing to personalized PD patient care.
引用
收藏
页数:12
相关论文
共 68 条
[1]  
Acharya Sourya, 2012, J Assoc Physicians India, V60, P38
[2]  
[Anonymous], 1963, Autom. Remote Control
[3]   Brain charts for the human lifespan [J].
Bethlehem, R. A. I. ;
Seidlitz, J. ;
White, S. R. ;
Vogel, J. W. ;
Anderson, K. M. ;
Adamson, C. ;
Adler, S. ;
Alexopoulos, G. S. ;
Anagnostou, E. ;
Areces-Gonzalez, A. ;
Astle, D. E. ;
Auyeung, B. ;
Ayub, M. ;
Bae, J. ;
Ball, G. ;
Baron-Cohen, S. ;
Beare, R. ;
Bedford, S. A. ;
Benegal, V. ;
Beyer, F. ;
Blangero, J. ;
Blesa Cabez, M. ;
Boardman, J. P. ;
Borzage, M. ;
Bosch-Bayard, J. F. ;
Bourke, N. ;
Calhoun, V. D. ;
Chakravarty, M. M. ;
Chen, C. ;
Chertavian, C. ;
Chetelat, G. ;
Chong, Y. S. ;
Cole, J. H. ;
Corvin, A. ;
Costantino, M. ;
Courchesne, E. ;
Crivello, F. ;
Cropley, V. L. ;
Crosbie, J. ;
Crossley, N. ;
Delarue, M. ;
Delorme, R. ;
Desrivieres, S. ;
Devenyi, G. A. ;
Di Biase, M. A. ;
Dolan, R. ;
Donald, K. A. ;
Donohoe, G. ;
Dunlop, K. ;
Edwards, A. D. .
NATURE, 2022, 604 (7906) :525-+
[4]   Parkinson's disease [J].
Bloem, Bastiaan R. ;
Okun, Michael S. ;
Klein, Christine .
LANCET, 2021, 397 (10291) :2284-2303
[5]   The organization of the human cerebellum estimated by intrinsic functional connectivity [J].
Buckner, Randy L. ;
Krienen, Fenna M. ;
Castellanos, Angela ;
Diaz, Julio C. ;
Yeo, B. T. Thomas .
JOURNAL OF NEUROPHYSIOLOGY, 2011, 106 (05) :2322-2345
[6]   Feature selection in machine learning: A new perspective [J].
Cai, Jie ;
Luo, Jiawei ;
Wang, Shulin ;
Yang, Sheng .
NEUROCOMPUTING, 2018, 300 :70-79
[7]   Does feature selection improve classification accuracy? Impact of sample size and feature selection on classification using anatomical magnetic resonance images [J].
Chu, Carlton ;
Hsu, Ai-Ling ;
Chou, Kun-Hsien ;
Bandettini, Peter ;
Lin, ChingPo .
NEUROIMAGE, 2012, 60 (01) :59-70
[8]   Identification and prediction of Parkinson's disease subtypes and progression using machine learning in two cohorts [J].
Dadu, Anant ;
Satone, Vipul ;
Kaur, Rachneet ;
Hashemi, Sayed Hadi ;
Leonard, Hampton ;
Iwaki, Hirotaka ;
Makarious, Mary B. ;
Billingsley, Kimberley J. ;
Bandres-Ciga, Sara ;
Sargent, Lana J. ;
Noyce, Alastair J. ;
Daneshmand, Ali ;
Blauwendraat, Cornelis ;
Marek, Ken ;
Scholz, Sonja W. ;
Singleton, Andrew B. ;
Nalls, Mike A. ;
Campbell, Roy H. ;
Faghri, Faraz .
NPJ PARKINSONS DISEASE, 2022, 8 (01)
[9]   Review: Sporadic Parkinson's disease: development and distribution of -synuclein pathology [J].
Del Tredici, K. ;
Braak, H. .
NEUROPATHOLOGY AND APPLIED NEUROBIOLOGY, 2016, 42 (01) :33-50
[10]   Spinal cord lesions in sporadic Parkinson's disease [J].
Del Tredici, Kelly ;
Braak, Heiko .
ACTA NEUROPATHOLOGICA, 2012, 124 (05) :643-664