Unsupervised domain adaptation for HVAC fault diagnosis using contrastive adaptation network

被引:0
|
作者
Ghalamsiah, Naghmeh [1 ]
Wen, Jin [1 ]
Candan, K. Selcuk [2 ]
Wu, Teresa [2 ]
O'Neill, Zheng [3 ]
Aghaei, Asra [2 ]
机构
[1] Drexel Univ, Dept Civil Architectural & Environm Engn, Philadelphia, PA 19104 USA
[2] Arizona State Univ, Sch Comp & Augmented Intelligence, Tempe, AZ 85281 USA
[3] Texas A&M Univ, J Mike Walker Dept Mech Engn 66, College Stn, TX 77843 USA
基金
美国国家科学基金会;
关键词
Unsupervised domain adaptation; HVAC fault detection and diagnosis; Transfer learning; Contrastive adaptation network; Temporal causality discovery framework;
D O I
10.1016/j.enbuild.2025.115659
中图分类号
TU [建筑科学];
学科分类号
0813 ;
摘要
Data-driven methods have shown great promise for heating, ventilation, and air conditioning (HVAC) systems' fault diagnosis, but their reliance on well-labeled datasets poses challenges in real-world applications where such data may not be readily available. Meanwhile, well-labeled data might exist from virtual testbeds or laboratory systems. Domain adaptation could provide a solution to utilize labeled data from a source domain (such as a virtual or laboratory testbed) to diagnose faults in an unlabeled target domain, such as faults in a real building system. This paper utilizes the contrastive adaptation network (CAN) algorithm, originally successful in image classification, to overcome the specific challenges faced by current domain adaptation algorithms in HVAC systems. Furthermore, temporal causal discovery framework (TCDF), a causality-based framework for discovering causal relationships in time series data, is implemented in the data processing step to meet the requirements of convolutional networks, where spatially closer features are more likely to be correlated. The results on air handling unit (AHU) datasets demonstrate that the CAN algorithm effectively facilitates domain adaptation in the absence of target labels and that the feature reordering process reduces the training time and the number of loops required for convergence.
引用
收藏
页数:15
相关论文
共 50 条
  • [41] Collaborative fault diagnosis of rotating machinery via dual adversarial guided unsupervised multi-domain adaptation network
    Chen, Xingkai
    Shao, Haidong
    Xiao, Yiming
    Yan, Shen
    Cai, Baoping
    Liu, Bin
    MECHANICAL SYSTEMS AND SIGNAL PROCESSING, 2023, 198
  • [42] Representation learning for unsupervised domain adaptation
    Xu Y.
    Yan H.
    Harbin Gongye Daxue Xuebao/Journal of Harbin Institute of Technology, 2021, 53 (02): : 40 - 46
  • [43] Gradient Harmonization in Unsupervised Domain Adaptation
    Huang, Fuxiang
    Song, Suqi
    Zhang, Lei
    IEEE TRANSACTIONS ON PATTERN ANALYSIS AND MACHINE INTELLIGENCE, 2024, 46 (12) : 10319 - 10336
  • [44] Unsupervised Adversarial Domain Adaptation Network for Semantic Segmentation
    Liu, Wei
    Su, Fulin
    IEEE GEOSCIENCE AND REMOTE SENSING LETTERS, 2020, 17 (11) : 1978 - 1982
  • [45] Unsupervised domain adaptation with progressive adaptation of subspaces
    Li, Weikai
    Chen, Songcan
    PATTERN RECOGNITION, 2022, 132
  • [46] Contrastive domain adaptation with consistency match for automated pneumonia diagnosis
    Feng, Yangqin
    Wang, Zizhou
    Xu, Xinxing
    Wang, Yan
    Fu, Huazhu
    Li, Shaohua
    Zhen, Liangli
    Lei, Xiaofeng
    Cui, Yingnan
    Ting, Jordan Sim Zheng
    Ting, Yonghan
    Zhou, Joey Tianyi
    Liu, Yong
    Goh, Rick Siow Mong
    Tan, Cher Heng
    MEDICAL IMAGE ANALYSIS, 2023, 83
  • [47] Unsupervised Bearing Fault Diagnosis via a Multi- Layer Subdomain Adaptation Network
    Thuan, Nguyen Duc
    Hue, Nguyen Thi
    Hong, Hoang Si
    INTERNATIONAL JOURNAL OF ADVANCED COMPUTER SCIENCE AND APPLICATIONS, 2023, 14 (05) : 541 - 548
  • [48] Contrastive Learning and Self-Training for Unsupervised Domain Adaptation in Semantic Segmentation
    Marsden, Robert A.
    Bartler, Alexander
    Doebler, Mario
    Yang, Bin
    2022 INTERNATIONAL JOINT CONFERENCE ON NEURAL NETWORKS (IJCNN), 2022,
  • [49] IFDS: An Intelligent Fault Diagnosis System With Multisource Unsupervised Domain Adaptation for Different Working Conditions
    Xu, Danya
    Li, Yibin
    Song, Yan
    Jia, Lei
    Liu, Yanjun
    IEEE TRANSACTIONS ON INSTRUMENTATION AND MEASUREMENT, 2021, 70
  • [50] Intelligent Fault Diagnosis of Bearings in Unsupervised Dynamic Domain Adaptation Networks Under Variable Conditions
    Zhang, Qianqian
    Lv, Zhongwei
    Hao, Caiyun
    Yan, Haitao
    Fan, Qiuxia
    IEEE ACCESS, 2024, 12 : 82911 - 82925