On Fourier Series in the Context of Jacobi Matrices

被引:0
|
作者
Matos, Jose M. A. [1 ]
Vasconcelos, Paulo B. [2 ]
Matos, Jose A. O. [2 ]
机构
[1] Univ Porto, Inst Super Engn, Inst Politecn Porto, Ctr Matemat, Rua Dr Antonio Bernardino de Almeida 431, P-4249015 Porto, Portugal
[2] Univ Porto, Fac Econ, Ctr Matemat, Rua Dr Roberto Frias S-N, P-4200464 Porto, Portugal
关键词
orthogonal polynomials; fourier series; Jacobi matrix; functions of matrices; spectral methods; CONNECTION COEFFICIENTS; LINEARIZATION FORMULAS; POLYNOMIALS;
D O I
10.3390/axioms13090581
中图分类号
O29 [应用数学];
学科分类号
070104 ;
摘要
We investigate the properties of matrices that emerge from the application of Fourier series to Jacobi matrices. Specifically, we focus on functions defined by the coefficients of a Fourier series expressed in orthogonal polynomials. In the operational formulation of integro-differential problems, these infinite matrices play a fundamental role. We have derived precise calculation formulas for their elements, enabling exact computation of these operational matrices. Numerical results illustrate the effectiveness of our approach.
引用
收藏
页数:16
相关论文
共 50 条
  • [1] On Fourier series of Jacobi-Sobolev orthogonal polynomials
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    JOURNAL OF INEQUALITIES AND APPLICATIONS, 2002, 7 (05) : 673 - 699
  • [2] On the mean convergence of Fourier–Jacobi series
    V. P. Motornyi
    S. V. Goncharov
    P. K. Nitiema
    Ukrainian Mathematical Journal, 2010, 62 : 943 - 960
  • [3] On Fourier series of a discrete Jacobi-Sobolev inner product
    Marcellán, F
    Osilenker, BP
    Rocha, IA
    JOURNAL OF APPROXIMATION THEORY, 2002, 117 (01) : 1 - 22
  • [4] Eigenproblem for Jacobi matrices: hypergeometric series solution
    Kuznetsov, V. B.
    Sklyanin, E. K.
    PHILOSOPHICAL TRANSACTIONS OF THE ROYAL SOCIETY A-MATHEMATICAL PHYSICAL AND ENGINEERING SCIENCES, 2008, 366 (1867): : 1089 - 1114
  • [5] Discrete-Continuous Jacobi-Sobolev Spaces and Fourier Series
    Diaz-Gonzalez, Abel
    Marcellan, Francisco
    Pijeira-Cabrera, Hector
    Urbina, Wilfredo
    BULLETIN OF THE MALAYSIAN MATHEMATICAL SCIENCES SOCIETY, 2021, 44 (02) : 571 - 598
  • [6] Discrete–Continuous Jacobi–Sobolev Spaces and Fourier Series
    Abel Díaz-González
    Francisco Marcellán
    Héctor Pijeira-Cabrera
    Wilfredo Urbina
    Bulletin of the Malaysian Mathematical Sciences Society, 2021, 44 : 571 - 598
  • [7] PERTURBATION SERIES FOR JACOBI MATRICES AND THE QUANTUM RABI MODEL
    Charif, Mirna
    Zielinski, Lech
    OPUSCULA MATHEMATICA, 2021, 41 (03) : 301 - 333
  • [8] A LIMIT FORMULA FOR SEMIGROUPS DEFINED BY FOURIER-JACOBI SERIES
    Guella, J. C.
    Menegatto, V. A.
    PROCEEDINGS OF THE AMERICAN MATHEMATICAL SOCIETY, 2018, 146 (05) : 2027 - 2038
  • [9] On convergence of Fourier series in discrete Jacobi-Sobolev spaces
    Ciaurri, O.
    Ceniceros, J. Minguez
    Rodriguez, J. M.
    INTEGRAL TRANSFORMS AND SPECIAL FUNCTIONS, 2023, 34 (09) : 703 - 720
  • [10] On the location of the eigenvalues of Jacobi matrices
    da Fonseca, C. M.
    APPLIED MATHEMATICS LETTERS, 2006, 19 (11) : 1168 - 1174